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ABSTRACT

To face the challenges of urban mobility optimisation, safety
and disturbance reduction, traffic monitoring flourishes around an-
thropized areas. Acoustic monitoring can provide a cost-effective
traffic counting system, besides using it as a noise monitoring pro-
cess. One would expect a traffic monitoring system to identify di-
rection and vehicle type while counting pass-bys on audio segments.
Main difficulties are related to the variety of sound landscapes and
sources near roadways. Generalisation among recording sites is del-
icate, and the accuracy depends on the amount of labelled data avail-
able per site. In this work, we introduce a non-supervised traffic
counting algorithm to complement the existing supervised models.
Our traffic counting algorithm uses the recording site metadata to
estimate a standard GCC-Phat mask for any pass-by. This mask is
applied on the cross-correlation signal of the 4 audio channels, per-
mitting a pass-by detection with direction identification. This in-
formation is transmitted to the supervised model, which eventually
refines its initial output. The addition of our algorithm counting es-
timation is highly effective on sites with few available labelled data.
A significant RMSE reduction is observed when total duration of
real labelled data is inferior to 2 hours.

Index Terms— acoustic vehicle counting, acoustic signal
cross-correlation, audio signal analysis

1. INTRODUCTION

For the last decades, most nations have gone through a quick in-
dustrialisation and urbanisation process. New populations have un-
dergone profound changes in their living environments. As a side
effect, an increasing noise exposure has been observed for these
populations. Hence, various institutes communicated on the public
health issue that high noise exposure represents [1]. Several stud-
ies showed that overexposure is a risk factor for cardio-vascular
diseases or diabetes, besides obviously different levels of hearing
loss [2]. Consequently, regulation has evolved to better monitor and
control sound exposure in different contexts.

A difference has been made between the major sound land-
scapes or sources. In that respect, traffic noise is the most harmful
noise source, according to an European Environment Agency re-
port [1]. Thus, traffic noise monitoring is a key component of the
battle against noise overexposure. Furthermore, data gathered by
acoustic monitoring systems can also benefit other domains, such
as helping urban facilities development or supervising areas of in-

terest [3]. Finally, the use of acoustic monitoring systems offers a
significant costs reduction, as collected data are lighter and easier
to process than videos, and less intrusive than magnetic or vibration
Sensors.

Further research has been conducted and several innovative
traffic monitoring systems have been proposed [4, 5, 6]. They ex-
plore either signal processing or deep learning to solve this task.

As part of the 2024 DCASE (Detection and Classification of
Acoustic Scenes and Events) Challenge [7], a baseline model is
shared by the organizers to serve as a basis to improve [8, 9]. The
objective is to count vehicles on 1-minute long audio segments.
More precisely, pass-bys are labelled according to the type of ve-
hicle (car or commercial vehicle) and direction (left or right).

The proposed model is a CRNN that uses both Generalized
Cross Correlation with Phase Transforms (GCC-Phat) and learnable
Gabor filterbank representations to count pass-bys per type and di-
rection. [8] shows that the model requires fine-tuning for each stud-
ied site. Our proposition draws on this model, and aims at improv-
ing its behaviour regarding sites with few labelled data. The goal is
to provide a higher accuracy in such sites while keeping its usual be-
haviour when a large dataset is used for training. For this purpose,
we choose to include a non-supervised vehicle counting algorithm,
that relies on Generalized Cross-Correlation with Phase Transform
(GCC-Phat).

When given two simultaneous records from the same site,
GCC-Phat is able to mark moving sound sources and their direction
of arrival. First, we estimate masks for GCC-Phat resulting from
vehicle pass-bys given their direction, speed and distance between
source and microphone. Then, a digital image correlation is per-
formed between the estimated mask and the GCC-Phat computed
from real audio records. Each pass-by is identified by a correlation
local maximum, assuming it respects our assumptions about vehicle
speed, direction and distance from microphone.

According to the recording site environment, criteria (threshold,
width) on correlation peak selection are adjusted. These successive
steps form a proper vehicle counting algorithm per direction. This
information eventually permits a final correction of the model pre-
diction, by checking the coherence between the algorithm and su-
pervised models outputs for vehicle counting in each direction. If
both predictions diverge, a weighting average is performed, with a
[ coefficient that depends on the amount of data used for training
the supervised model.

In this technical report, section 2 will detail the methodology,
regarding the supervised model as well as the vehicle counting al-
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Figure 1: Architecture of the proposed model. In black, the initial baseline model, computing in parallel GCC-Phat between pairs of channels
and learnable Filterbank with Gabor filters. Encoded, time-distributed and concatenated features go through a Gated Recurrent Unit (GRU)
and a fully-connected (FC) layer to regress the number of vehicles per type (car, CV) and per direction (left-to-right (1), right-to-left (r)) [8].
In cyan, the added units, with a vehicle counting algorithm which estimates the number of vehicles per direction thanks to GCC-Phat on
channels 1 & 2 and site metadata (speed limit, distance to street side). The [ unit represents a weighting coefficient between the algorithm

estimation and the model FC output.

gorithm. In section 3 we will focus on the whole system evaluation,
to compare with the initial model behaviour. Finally, section 4 pro-
vides a conclusion of this work, with further perspectives for im-
provement.

2. METHODOLOGY

Most recent traffic counting systems are supervised, meaning that
neural networks use labelled data during a first training phase [5, 6].
The network learns to correctly interpret inputs and predict labels
thanks to the data at its disposal. The more the model gets repre-
sentative data, the better its accuracy will be when applied on new
unseen data.

Regarding this specific task, traffic noise largely differs from
one site to another due to various parameters (vehicle speed, traffic
density, reverberation, distance to street side, etc.). This impels us to
separate data per site, and train the model on different data for each
site. However, data distribution between site is far from uniform :
multiple days of signal are available for one site whereas three other
have a total recording duration inferior to 2 hours.

2.1. System principle

This is the reason why we choose to complement the existing super-
vised model with a non-supervised model, able to correct the result
for sites presenting a lack of data. In this subsection, both units
will first be described before presenting the connection unit which
gathers both outputs.

2.1.1. Supervised model architecture

The supervised model was designed and proposed by [8] in the 2024
DCASE Challenge context. Its architecture is depicted by the black
cells in fig. 1.

It consists of a convolutional recurrent neural network (CRNN),
with two different branchs for treating direction and vehicle type.
Starting from the 4-channels raw audio waveform, the first branch
performs Generalized Cross-Correlation with Phase Transform
(GCC-Phat) on each of the 6 possible pairs of channels. The
outcome pass through a convolutional encoder: two Conv2D lay-
ers with 32 filters and one layer with 64 filters, each with a ker-
nel size of (3,3) and a stride of 2 in both dimensions. Then, the
Time-Distributed MLP unit consists of two time-distributed fully-
connected layers with 128 neurons each. In the second branch, the
spectrogram of each channel is filtered via a learnable Gabor filter-
bank with 96 channels. The output passes through two supplemen-
tary units (Convolutional encoder and Time-distributed MLP), with
the same initial parameters and filters as in the first branch.

Both branches resulting features are concatenated and passed
to another time-distributed block with three layers of 128 neurons.
Temporal dependencies are treated thanks to the following Gated
Recurrent Unit (GRU). GRU is composed of two layers with 128
neurons each. Finally, the fully-connected (FC) layer acts as a re-
gression layer, to provide a 4-element long scalar vector, providing
a prediction for amount of pass-bys per direction and per type. This
supervised model presents a total of 506 K trainable parameters.

2.1.2. Vehicle Counting Algorithm

The proposed Vehicle Counting Algorithm (VCA) comes in as an
independent branch, whose results are used at the very end of the
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Figure 2: Process of Vehicle Counting Algorithm for estimating the
amount of left pass-bys on a 60s-long audio segment. In the two last
graphs, red markers stand for detected pass-bys in each direction.

prediction process. Its integration in the proposed system is illus-
trated in figure 1. A first unit computes GCC-Phat on the first and
second channels of the audio input (1°* graph of Fig. 2). 16 GCC
coefficients are used, with a 64-ms window size and a 32-ms hop
length. VCA uses the GCC-Phat outcome and recording site meta-
data to count vehicles per direction.

The first step of the VCA consists in generating an estimate
mask for a typical pass-by according to the site metadata (2"¢ and
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Figure 3: Evolution of RMSE for baseline model and VCA accord-
ing to training dataset size on site 3.

37 graphs of Fig. 2). Speed limit and distance to street side indeed
impact the shape of a pass-by on the GCC-Phat outcome. Thus,
both information are retrieved to generate an adequate mask for
each different recording site. The generated mask is a 2D matrix
of size (16 x L), corresponding to the 16 GCC coefficients and L
the number of temporal frames.

For a 60s-long audio segment, the GCC-Phat outcome with the
described parameters has a 16 x 1874 size. The correlation between
the GCC-Phat outcome and the generated mask provides a feature
enabling an accurate pass-by detection (4°" and 5" of fig. 2). Each
pass-by in a given direction corresponds to a local maximum in the
correlation evolution. Additional criteria may be applied to sharpen
the pass-by detection. These criteria (threshold, prominence, dis-
tance and width) are defined according to both site metadata and
empirical findings. On last two graphs of figure 2, detected pass-
bys from left and right are identified by red markers.

This peak detection process allows a pass-by counting per di-
rection on the given audio segment. At the same time, the super-
vised model provides a prediction per site and per vehicle type for
the same segment. There now remains to take the final decision
using both information.

2.1.3. Connection between both units

As written in introduction to this section, a supervised model accu-
racy highly depends on the amount of representative data available
for training. Figure 3 shows RMSE on vehicle counting per direc-
tion for various training dataset duration on site 3. Regarding this
site, we wee that RMSE is lowered if training dataset is inferior to
6 hours whereas a duration longer than 12 hours favours the super-
vised model. Thus, we choose to introduce an adaptive weighting
coefficient (Eq. 1) on the given inputs while making the final deci-
sion.

. Ni
Bi =1 —min (@,1> W

with NV; the amount of training segments for site <.

With 3; defined this way, we have 3; € [0, 1]. With few avail-
able data, 3; is close to 1. With enough data (IV; close to or superior
to 1440), B; is close to 0. Thus, the 3; coefficient is applied to the
VCA counting estimation, whereas a (1 — ;) coefficient is applied
to the model output, as described by equation 2.
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2.2. Training process

Aside from its architecture, a supervised model also relies on an
adequate training process. The amount of labelled data available
highly impacts the choice of hyperparameters and overall training
strategy. In [8], the authors introduce synthetic data to address lack
of data for several sites. Model is first pre-trained on synthetic data
before fine-tuning on real data. The process of generating synthetic
data is described in section 2.2.1.

2.2.1. Data synthesis

The open source pyroadacoustics [9] simulator is used to gen-
erate data. This simulator is designed to synthesize noise from indi-
vidual pass-bys on aroad. The vehicle modelling relies on a mixture
of road/tire interaction noise (generated by Harmonoise model [10])
and engine noise (produced by Baldan model [11]). These signal
mixtures are used as inputs to the pyroadacoustics simulator,
generating several different pass-by events. Finally, 60s-long seg-
ments are created using these individual pass-bys, site traffic density
and proportion between cars and commercial vehicles.

2.2.2. Hyperparameter definition

To stay in line with the initial model approach [8], pre-training is
performed on 24 hours of synthetic data, before fine-tuning with
the available real-data per site. Model training is performed using
a mean squared error loss, Adam optimizer and a batch size of 64.
Learning rate for pre-training phase is equal to 10>, During fine-
tuning, learning rate will be reduced to 10™%.

3. EVALUATION

3.1. Data description

As established earlier, our model is evaluated on 6 different record-
ing sites, in Germany and United States. A total of 264 hours of
recording were used for the training, validation and test sets. Ta-
ble 1 describes the amount of available data, and various properties
for each of the 6 recording sites.

These properties can be viewed in parallel with the table 2, pre-
senting error metrics per site for baseline model, VCA only and the
proposed model. First, we look at the RMSE_dir, which is the Root-
Mean-Square Error on the estimated pass-by counting for each di-
rection. Vehicle type is ignored in the first instance, as VCA only
differentiates direction. VCA is better than the baseline model on
the 3 sites with fewer available data. However, baseline lowers
RMSE _dir for the 3 other sites. This confirms the trend observed
in figure 3, where baseline outperforms VCA when training dataset
duration is longer than 9 hours.
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Table 1: Site metadata and amount of recorded data.

Site | Training set Max traffic density Speed limit
duration (h)  (vehicle/hour/lane) (km/h)
locl 20.9 1000 100
loc2 0.9 500 50
loc3 68.8 500 50
loc4 0.3 400 50
loc5 1.6 140 40
loc6 29.0 900 90

Table 2: Error metrics evaluated on the validation dataset of each
site. RMSE is computed regarding direction only on the baseline
and VCA predictions, then regarding direction and type on the base-
line and proposed model predictions.

Site | RMSE_dir RMSE_dir RMSE RMSE
(baseline) (VCA) (baseline) (model)
locl 4.346 4.620 1.661 1.768
loc2 3.606 2.461 1.987 1.294
loc3 2.215 2.545 0.836 0.839
loc4 1.711 0.964 1.296 0.689
loc5 1.088 0.956 0.609 0.487
loc6 2.703 4.237 1.150 1.155

Regarding the final outcome, the proposed model lowers RMSE
compared to baseline on average. A clear improvement is realised
on the three sites with fewer data. Otherwise, RMSE stays in the
same range, because the 3; coefficient (Eq. 1) is equal to 0, meaning
that VCA counting is ignored.

4. CONCLUSION AND FUTURE WORK

In conclusion, we presented a vehicle counting algorithm aimed
at complementing an existing supervised model. The algorithm is
based on Generalized Cross-Correlation with Phase Transform over
channels of a microphone array. It estimates the amount of pass-bys
per direction on a given audio segment, using information on the
recording site such as speed limit or distance between microphone
and street side.

Associated with a supervised model designed to count pass-bys
per direction and per vehicle type, our algorithm may refine the ini-
tial model predictions. In case of a lack of training data, supervised
model is not always accurate on certain sites. Its predictions are
then corrected by the implemented vehicle counting algorithm out-
come. This addition allows an average 0.474 RMSE decrease for
the 3 sites with fewer data, while keeping similar error values for
the 3 remaining sites.

In a supervised traffic counting system, the added algorithm is
highly effective to cover for a lack of data on specific recording
sites. We now aim to improve the algorithm accuracy in dense traffic
conditions, in order to provide an efficient system in any conditions.
Thus, we could validate a lower standard for the amount of data
required to train an accurate traffic counting system.
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