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ABSTRACT 

This report presents a method for bioacoustic sound event detec-

tion using few-shot learning, developed for the DCASE 2024 

Task 5. Our approach experiments with pretrained models that 

take waveforms as input. These models serve as feature extrac-

tors, and prototypical loss is used for prediction. Initially, we 

employed direct predictions with openly available pretrained 

models. Subsequently, we attempted to fine-tune the models for 

each file, using only the first five annotations as training set. The 

direct prediction system achieved 40% F-measure score, 12 

points under the baseline system proposed by the organizers. 

Fine-tuning did not improve the model's performance over direct 

prediction. 

While our proposed method can be applied directly without 

extensive parameter tuning or additional training, the results 

indicate that it does not achieve the generalizability required for 

this challenge when compared to the baseline method. This work 

suggests how state-of-the-art models, despite their high perfor-

mance on other datasets or benchmarks, may still perform subop-

timal on sound event detection using few-shot learning for cer-

tain taxonomic groups present in the DCASE challenge datasets. 

1. INTRODUCTION 

With the development of automatic recorders, collecting vast 

amounts of acoustic data has become easier than ever. However, 

processing this data remains challenging, particularly in novel or 

less-studied environments and taxonomic groups [1], [2]. 

For the DCASE Challenge Task 5, a few-shot learning frame-

work has been adapted to perform sound event detection (SED) 

across a diverse array of tasks [3]. The goal is to enable rapid 

detection in new tasks with minimal human effort, requiring 

annotation of only the first five sounds in a file. To excel in this 

task, the method must effectively detect sounds from a wide 

variety of taxonomic groups and environments. 

A new baseline system was proposed this year [4], building on 

the knowledge of previous challenges. The authors pinpoint 

domain shift as one of the main challenges. A part of this diffi-

culty involves developing a system capable of detecting calls of 

varying durations, ranging from approximately 100 milliseconds 

to several seconds. Additionally a common challenge in sound 

classification or detection is the choice of input features for the 

system, often involving different spectrogram representations. 

While some features typically perform better than other, tests are 

often needed to select the best features for the specific case study 

[5]. 

To address challenges related to sound length variation, feature 

selection, and domain shift, we explored the potential of open 

access pretrained systems that perform detection or classification 

directly from waveforms. Such systems have demonstrated state-

of-the-art performance on various bioacoustic datasets and 

benchmarks. Specifically, we tested the applicability of the 

AVES model [6] for SED using five-shot learning on the DCASE 

Challenge 2024 Task 5 data. 

2. METHOD 

The code is available on GitHub [7] with details of the hyperpa-

rameters used for training. 

2.1. Models 

AVES is a model based on wav2wec2 architecture, a transformer 

based auto-encoder pretrained on a combination of publicly 

available audio sets. Thanks to the technique of tokenization, 

AVES is able to use input of different size. The model was used 

as feature extractor using the version self-trained on bioacoustics 

data available online [8]. 

Another recently published model was tested, BioLingual, based 

on the CLAP-LAION architecture [9], which outperformed 

AVES on benchmark datasets. Unfortunately due to time and 

computation power constraint, we were unable to test the perfor-

mance of BioLingual on the full validation and test set. 

2.2. Direct Prediction 

Each file is loaded and resampled to 16 kHz, the frequency used 

for training the AVES model. Figure 1 describes the workflow 

for direct prediction, which involves the following steps: 

The mean duration of the first five positive annotations, denoted 

as dpos , is computed and clipped between 25ms (the minimal 
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input length for AVES) and 1 second. This clipping provides 

better granularity of prediction for longer annotations and was 

determined experimentally. The positive annotated segments are 

concatenated and divided by dpos . The negative segments - the 

time between annotations - is concatenated and divided in seg-

ments of dpos length. The query time is then divided using a slid-

ing window approach of dpos duration without overlap (1). 

The feature vector corresponding to each positive, negative, and 

query segment is computed by the model (2). 

Feature vectors of positive and negative segments are averaged to 

obtain the positive and negative prototypes, respectively (3). 

The Euclidean distance between the feature vector of each query 

segment and the prototypes is evaluated, and the prediction of a 

class is assigned based on the prototype closest to the query (4). 

2.3. Fine tuning on 5 samples 

To avoid reducing the generalization capability of the model by 

re-training it on the DCASE data, we attempted to fine-tune the 

model for each file before predicting the query set. This fine-

tuning used only the first five annotations as positive samples and 

the intervals between annotations as negative samples. The ex-

periments were conducted on the validation set, using the query 

time as validation dataset and the annotated time as training 

dataset, to determine an appropriate fine-tuning approach. For the 

test set, the model was trained on the annotated time without 

validation steps, then used to predict the query time. An early 

stop condition based on the training loss was employed to save 

computation time and prevent overfitting. After training, a simi-

lar workflow to “Direct prediction” was used, but with the newly 

fine-tuned model instead of the pretrained model. 

2.4. Loss function 

Several loss functions were tested during development: 

- Binary cross-entropy on prototypical loss. 

- Supervised contrastive learning (SCL) [10]. 

- Fusion loss combining SCL and a custom loss based on 

the distance between prototypes. 

 

Training on SCL only often led to have the prototype converge 

towards each other in the feature space. Based on this observa-

tion, a custom loss was created, combining the SCL with a loss 

proportional to the inverse of the Euclidean distance between the 

prototypes. 

2.5. Data augmentation 

For the SCL, the data augmentation was implemented using the 

torch implementation of Audiomentation [11]. A pipeline was 

created using gain, pitch, shift and white noise addition opera-

tions to create augmented version of the samples for each batch. 

2.6. Post-processing 

To refine the predictions, the simple post processing approach 

implemented in [4] was used, removing all the predictions small-

er than a fraction of dpos with a threshold of 0.7. 

3. RESULTS 

Table 1 presents the results of the different approaches on the 

validation set. Baseline is the system proposed for the DCASE 

challenge 2024 task 5, which is based on prototypical network 

using negative hard sampling. “Direct prediction” refers to the 

system described in Section 2.2 including the post-processing 

steps outlined in Section 2.6. The “fine-tuned system” is de-

scribed in Section 2.3, and uses the fusion loss, data augmenta-

tion, and post-processing methods detailed in Sections 2.4, 2.5, 

and 2.6, respectively.  

 

System F-measure Precision Recall 

0. Baseline 52.14 56.18 48.64 

1. Direct prediction 39.28 36.64 51.09 

2. Fine-tuned 29.34 24.75 54.79 

Table 1: performance of the proposed system and the 

baseline based on the DCASE task 2024 Validation set. 

 

 

Figure 1: Direct prediction workflow. Audio file are initially split in annotated time, ending on the last positive annotation, 

and query time (0). The positive annotated segments (green) are concatenated and cut in segment of similar length equal to 

the average duration of the positive annotation dpos. The negative segments (yellow) follow the same process using the same 

duration dpos. The query time is divided in segments of dpos length (1). Features corresponding to the segment are extracted 

by the pretrained model (2). Positive and negative prototypes are computed by averaging the feature vectors of their corre-

sponding segments (3). In (4), the latent space is simplified to 2D for visualization. The Euclidean distance between query 

features and prototypes is computed and the predicted class for each segment corresponds to the closest prototype. 
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Results per dataset show significant differences, as illustrated in 

Figure 2. 

 

 

Figure 2: F-measure (%) of “Direct prediction” per da-

taset 

Results based on fine-tuning using prototypical loss or SCL were 

very low in the preliminary tests, and are not included in this 

report. Overall, fine-tuning on the first five samples did not 

improve the performance of the predictions. Upon closer inspec-

tion, it was observed that while recall rates improved slightly for 

some files, precision rates decreased substantially. 
 

Our preliminary tests indicated that BioLingual performed better 

than AVES on certain files, although requiring significantly more 

computation time. Due to time constraints the applicability of 

BioLingual was not further explored and the results are not in-

cluded in this report. 

4. DISCUSSION 

The “Direct prediction” system outperformed the fine tuning 

system, but performed less than the baseline system. 

 

Despite offering simplicity, directly using waveforms sacrifices 

an opportunity to enhance signals before they are used in a mod-

el. Waveforms are also more challenging for humans to interpret 

compared to spectrograms, making enhancement techniques and 

data augmentation more difficult to implement. Additionally, 

data augmentation methods are generally more advanced for 

spectrograms than for waveforms. 

On the validation set, performance was particularly low for the 

PB and PB24 datasets, suggesting that the model struggles to 

interpret the types of calls and background noises present in these 

datasets. One explanation could be that AVES was not trained on 

data that provides a good representation of such calls. Additional 

training might improve performance due to the model's large 

number of parameters. However, the complexity of the model 

could explain why fine-tuning for each file did not work effec-

tively. A larger dataset or fewer parameters might be required to 

avoid overfitting and achieve significant improvements with fine-

tuning. 
Another limitation arises from the loss function used during 

training, which requires a balanced dataset. This constraint leads 

to discarding of valuable annotated data, which is already scarce 

for this task. We hypothesize that using a loss function capable of 

handling data imbalance, such as Focal Loss [12], could enhance 

performance. 

Further improvement could be inspired by the baseline system 

through the use of hard sampling techniques, which are compati-

ble with the proposed system and have shown to substantially 

increase performance for the baseline system. 

5. CONCLUSION 

While models based on complex architectures such as AVES and 

BioLingual have demonstrated state-of-the-art performance in 

various classification and detection tasks in bioacoustics, this 

study suggests that they might not be the most suitable for ad-

dressing the DCASE Challenge Task 5. The proposed method 

has shown satisfactory performance on certain datasets and is 

characterized by its ease of use and straightforward implementa-

tion, without the need for parameter tuning or additional training. 

However, further research is necessary to understand and miti-

gate the limitations observed on some datasets. 
We propose that incorporating negative hard sampling or addi-

tional training could be a promising direction for the “Direct 

Prediction” system. Additionally, we suggest that employing a 

more appropriate loss function might enhance the performance of 

the fine-tuning system, although this method could be incompati-

ble with large and complex architectures. Finally, more research 

is required to evaluate the potential of other waveform-based 

models, such as BioLingual, in performing this task effectively. 
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