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ABSTRACT

In this technical report, we describe our systems for DCASE 2024
Challenge Task4. Our systems are mainly based on MAT-SED,
a pure Transformer-based SED model with masked-reconstruction
based pre-training. In MAT-SED, a Transformer with relative po-
sitional encoding is first designed as the context network instead
of RNNs. The Transformer-based context network is pre-trained
by the masked-reconstruction task on all available target data in a
self-supervised way. Both the encoder and the context network are
jointly fine-tuned in a semi-supervised manner. Our final systems
achieve PSDS1 of 0.588(single model) and 0.600(ensemble) on the
validation set of DESED dataset.

Index Terms— sound event detection, transformer, masked-
reconstruction

1. INTRODUCTION

Most recent sound event detection(SED) architecture can gener-
ally be divided into an encoder network and a context network. In
classical CRNN based SED systems [1], convolutional neural net-
works (CNNs) are used as the encoder network for feature extrac-
tion, while recurrent neural networks (RNNs) are employed as the
context network to model temporal dependencies across latent fea-
tures from the encoder. Recently, Transformer-based SED models
have surged in popularity, inspired by the successes of Transformers
in various domains, including natural language processing [2, 3],
computer vision [4] and automatic speech recognition [5, 6]. A
widely used approach is to employ Transformer models pre-trained
on readily available large-scale audio tagging datasets, such as Au-
dioSet [7], to serve as powerful feature extractors. Among high-
ranking models [8, 9] of DCASE2023, the pre-trained Transformer
and the CNN are concatenated in parallel as the encoder network,
which can take the advantages of global and local features from dif-
ferent encoders. However, most of those works only applied Trans-
former structures partially to the traditional CRNN, which limits the
ability of the whole system.

In this year’s challenge, we use a pure Transformer-based SED
model, named Masked Audio Transformer for Sound Event De-
tection (MAT-SED). MAT-SED begins with the pre-trained Trans-
former model as an encoder network, then a Transformer with rel-
ative positional encoding instead of RNNs as the context network,
which can better capture long-range context dependencies of latent
features. We use the masked-reconstruction task to pre-train the
context network in the self-supervised manner, then fine-tune the
pre-trained model with the classical mean teacher algorithm. This
training paradigm maximizes the utilization of large quantities of
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Figure 1: The architecture of our model, comprising two main com-
ponents: the encoder network (green) and the context network (yel-
low), both of which are based on Transformer structures.

unlabeled data compared to pure semi-supervised learning. Experi-
mental results on the DCASE2024 validation dataset show that the
proposed MAT-SED achieves PSDS1 of 0.588 (single model) and
0.600 (ensemble) 1.

2. METHODOLOGY

In this section, we first outline the model structure, then introduce
the masked-reconstruction based pre-training and the fine-tuning
strategies.

2.1. Model Structure

The overall structure of MAT-SED, as shown in Figure 1, consists
of two main components: the encoder network and the context net-
work. The encoder network is used to extract features from the

1More details of MAT-SED are presented in our paper "MAT-SED:
A Masked Audio Transformer with Masked-Reconstruction Based Pre-
training for Sound Event Detection", which has been accepted by Inter-
speech 2024.
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Table 1: Submitted systems’ performances on validation set and public evaluation set of the DESED Dataset.

system Encoder Network Ensembled with ATST-SED PSDS1(val.) PSDS1(public eval.)
1 PASST % 0.587 0.613
2 PASST+CNN % 0.588 0.637
3 PASST+CNN ! 0.600 0.655
4 PASST+CNN ! 0.600 0.657

mel-spectrogram, outputting latent feature sequences. The context
network is responsible for capturing temporal dependencies across
the latent features. Different types of head layer follow the con-
text network to handle specific tasks, such as reconstruction, audio
tagging and SED.

The encoder network of MAT-SED is based on PaSST [10],
a large pre-trained Transformer model for audio tagging. Each
mel-spectrogram is divided into several 16 × 16 patches, then
patches are projected linearly to a sequence of embeddings. The
sequence traverses through 10 layers of PaSST blocks consisted of
Transformers. The output of the encoder network is denoted as
Z = [z1, z2, ..., zT] ∈ RC×T , where C is the dimension of the
embedding vector, and T is the length of encoder’s output in the
time dimension.

Instead of the conventional RNN structure, we utilize 3 lay-
ers of Transformer block to constitute the context network. Given
the crucial need for localization in the SED task, integrating po-
sitional information becomes vital. We use relative positional
encoding (RPE) [11] to achieve this purpose, where the learn-
able positional encoding is determined by the relative position be-
tween frames. Compared to learnable APE, the RPE is naturally
translation-equivariant [12], making it more suitable for modelling
temporal dependencies.

2.2. Masked-reconstruction based pre-training

The model structure during pre-training is depicted in Figure 1 (a).
At this stage, we initialize the encoder network using the PaSST
model pre-trained on AudioSet [7] and freeze its weights, to fo-
cus on pre-training the context network. We design the masked-
reconstruction task as the pretext task, similar to train a masked
language model. We mask a certain proportion of frames in the
latent feature sequence Z, and substitute the masked frames with
the learnable mask token, obtaining a new sequence Z′. The
masked-reconstruction task requires the context network to restore
the masked latent features using the contextual information, which
helps to enhance the temporal modeling ability of the context net-
work. The masked sequence traverses through the context network
and the reconstruction head composed of two fully connected lay-
ers, yielding the reconstructed sequence Ẑ = [ẑ1, ẑ2, ..., ẑT ] ∈
RC×T . We use mean squared error (MSE) loss to evaluate the qual-
ity of reconstruction:

Lm =
∑
x∈D

∑
t∈Mx

(ẑt(x)− zt(x))
2 (1)

where D denotes the pre-training dataset, and Mx denotes the set
of masked frame indices corresponding to the sample x. Note from
this that only the masked frames are used to calculate the recon-
struction loss.

The model structure in the fine-tuning stage is shown in Fig-
ure 1 (b). During fine-tuning, the reconstruction head is replaced by

the SED head composed of a fully connected layer, which outputs
the frame-level prediction. The frame-level prediction is pooled
over the time dimension by linear-softmax pooling [13], to obtain
the clip-level prediction result. Following the task-aware module
in [14], we additionally set up an AT head to focuse on the audio
tagging task. The mean-teacher algorithm [15] is used for semi-
supervised learning, with the consistency weight of 40, and the
sliding windows strategy is used in the encoder network of teacher
model to enhance the localization capability.

Furthermore, we explored the use of Convolutional Neural Net-
works (CNNs) as adapters to inject specific inductive biases into a
Transformer-based backbone. When incorporating CNNs alongside
mask reconstruction during fine-tuning, directly adding CNN fea-
tures to the audio transformer model would significantly alter the
feature distribution learned during pretraining, rendering the con-
text network incapable of correctly handling the modified, unfamil-
iar features. To address this, we propose the following method for
injecting CNN features during fine-tuning:

Fmerge = Fpretrain + βFCNN

Here, the weight parameter (β) is initialized to 0, ensuring that the
output feature distribution of the pretrained network remains stable
during the early stages of fine-tuning, despite the injection of CNN
features.

3. EXPERIMENTS

3.1. Experiment setting

The input audio is sampled at 32kHz. For feature extraction, we
use a Hamming window of 25ms with a stride of 10ms to perform
short-time Fourier transform(STFT). The spectrum obtained by the
STFT is further transformed into a mel-spectrogram with 128 mel
filters. Mixup [16], time shift and filterAugment [17] are used for
data augmentation.

During the pre-training phase, the model is trained over 6000
steps with a batch size of 24 and a learning rate of 1×10−4. For the
masked-reconstruction task, the masking rate is set to 75%. During
the fine-tuning stage, batch sizes for real strongly labeled, synthetic
strongly labeled, real weakly labeled, and real unlabeled data are
set to 3, 1, 4, 4, respectively. Following the strategy in [18], only
the SED head and AT head are trained for the first 6000 steps of
fine-tuning, then the end-to-end fine-tuning is performed over the
next 12000 steps. Learning rates for the encoder network, decoder
network, and head layers are set to 5×10−6, 1×10−4, and 2×10−4,
respectively. The AdamW [19] optimizer is used for optimization
with a weight decay of 1× 10−4. Training is conducted on 2 Intel-
3090 GPUs for 13 hours in total.
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3.2. Results

Table 1 shows the PSDS1 scores of our systems on validation set
and public evaluation set. We use the validation set for hyper-
parameters tuning, and the public evaluation dataset is only used
for the final evaluation before submission. We also combine MAT-
SED with ATST-SED [20] through model ensemble(systems 3 and
4). Specifically, we compute a weighted average of the final pre-
dictions from both models. For system 3, we evenly weight MAT-
SED and ATST-SED (0.5 each), while for system 4, we adjust the
weights to 0.7 for MAT-SED and 0.3 for ATST-SED.
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