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ABSTRACT

The task 1 of the DCASE Challenge 2024 focuses on developing
low-complexity acoustic scene classification (ASC) systems with
limited labeled training data. This technical report details the sys-
tems we submitted. We firstly use self-supervised learning (SSL)
techniques to pre-train large teacher models on AudioSet. The
self-supervised teachers are then fine-tuned on ASC dataset using
weight-freezing strategies. Knowledge distillation is employed to
transfer the self-supervised knowledge to a low-complexity ASC
model. The student model, TF-SepNet-64, is designed to meet
the upper complexity limit of the challenge requirements. To mit-
igate the device shift problem, we used Freq-MixStyle and device
impulse response augmentation. In experiments, our best system,
trained on 5 given subsets, achieves an average accuracy of 56.6%1.

Index Terms— Acoustic Scene Classification, data efficiency,
low complexity, self-supervised learning, knowledge distillation

1. INTRODUCTION

Acoustic Scene Classification (ASC) [1] is a fundamental task in the
field of audio signal processing, aiming to classify audio recordings
into predefined scene categories such as streets, parks, or airports.
Over the years, the development of ASC has significantly pro-
gressed through the annual Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge. The early challenges fo-
cused on fundamental classification tasks, but recent editions have
included more sophisticated scenarios such as mismatched condi-
tions and low-complexity models [2], promoting robustness and
real-world applicability.

Traditionally, ASC models heavily rely on supervised learning
approaches [3, 4, 5], which necessitate large amounts of labeled data
to achieve high performance. Obtaining such labeled datasets is
resource-intensive, both in terms of time and human effort. In task
1 of the DCASE Challenge 2024, participants are required to de-
velop low-complexity acoustic scene classification (ASC) systems
with limited training data [6]. Specifically, 5 training subsets are
provided, containing 5%, 10%, 25%, 50%, and 100% of the orig-
inal training set’s size. The submitted systems, trained on these 5
subsets, are evaluated by the average accuracy.

1Source code: https://github.com/yqcai888/easy_
dcase_task1

Knowledge distillation has been demonstrated to be effective
for the ASC task in previous years [4, 7]. In this report, we explore
a data-efficient approach to ASC by incorporating self-supervised
learning (SSL) teachers. Specially, we introduce BEATs [8], an
audio SSL model, as the teacher models. The teachers are self-
supervised pre-trained on AudioSet [9] and then fine-tuned on ASC
dataset using different weight-freezing strategies. Remarkably, we
find that even pure SSL models with several epochs of fine-tuning
can achieve over 50% accuracy with the 5% training subset. For
the student model, we continue with the TF-SepNet [10], which
achieved second-top ranking in the last year. We propose TF-
SepNet-64 by adjusting several components of TF-SepNet to max-
imize the model parameters and computational complexity. The
experiments show that the self-supervised teacher ensembles sig-
nificantly improve the classification accuracy of student model.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Dataset

The TAU Urban Acoustic Scene 2022 Mobile development dataset
[2] consists of recordings captured using mobile devices in urban
environments. The dataset includes 230,350 audio clips, each with
a duration of 1 seconds and a hard label of an acoustic scene. There
are totally 10 different acoustic scene categories including airport,
bus, metro, metro station, park, public square, street pedestrian,
street traffic, tram, and urban park. The recordings were captured
across several cities around the world and using a wide range of mo-
bile devices. The dataset for the task1 of DCASE2024 Challenge
has exactly the same content as the TAU Urban Acoustic Scenes
2022 Mobile development dataset, but the training sets of differ-
ent sizes are provided. These train subsets contain approximately
5%, 10%, 25%, 50%, and 100% of the audio snippets in the train
split provided in previous years. Participants are required to develop
ASC systems on specified data subsets.

2.2. Feature Extraction

For TF-SepNet-64 [10], we generally follow the baseline settings
[11] for feature extraction. The audio recordings are firstly resam-
pled to 32 kHz. Time-frequency representations are then extracted
using a 4096-point FFT with a window size of 96 ms and a hop
size of 16 ms. The primary difference in our approach is the appli-
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Figure 1: Knowledge distillation with self-supervised teachers. (a) Self-supervised pre-training teachers on AudioSet. (b) Fine-tuning
teachers on ASC dataset. (c) Distilling knowledge from self-supervised teachers to low-complexity ASC student. Snowflake icon indicates
that the parameters of the corresponding part are frozen, while flame icon indicates the opposite.

cation of a Mel-scaled filter bank with a large number of frequency
bins, 512, to convert the spectrograms into mel spectrograms, which
leads to a slight improvement on the classification accuracy. The fi-
nal input size for TF-SepNet is (512, 64).

As for BEATs [8], we use the default configuration in the orig-
inal work. Each raw waveform is resampled to 16 kHz and extract
128-dimensional Mel-filter bank features using a 25 ms Povey win-
dow with a 10 ms shift. The features are normalized according to
the mean and standard deviation of AudioSet [9]. Each acoustic
feature is then divided into 16 × 16 patches and flattened into a se-
quence of patches to serve as input for the BEATs.

2.3. Data Augmentations

Data augmentation is a crucial technique in ASC tasks, especially
when the labeled data is limited. In our approach, we use a combi-
nation of Soft Mixup, Freq-MixStyle [7], and Device Impulse Re-
sponse (DIR) augmentation [12] to enhance the diversity and qual-
ity of our training data. All augmentations are implemented to be
plug-and-play during training.

• Soft Mixup is the adjusted version of Mixup [13] for mixing
both the ground truth labels and the soft labels of teachers.
Mixup generates a new training sample by linearly interpolat-
ing two random examples and their corresponding labels. Spe-
cially, given two examples (xi, yi, ỹi) and (xj , yj , ỹj), where
x is the input feature, y is the ground truth label, and ỹ is the
teacher logits, Soft Mixup generates a new sample as follows:

xnew = λxi + (1− λ)xj (1)
ynew = λyi + (1− λ)yj (2)
ỹnew = λỹi + (1− λ)ỹj (3)

• Freq-MixStyle is the frequency-wise version of MixStyle [14].
It normalizes the frequency bands instead of channels, which
has been demonstrated effective for mitigating the device shift
problem in ASC tasks.

• Device Impulse Response (DIR) Augmentation aims to sim-
ulate recordings from one device to other devices. The raw
waveform is convolved with a device impulse response ran-
domly selected from the MicIRP2. The probability of applica-
tion is controlled by a hyperparameter pdir .

3. KNOWLEDGE DISTILLATION WITH
SELF-SUPERVISED TEACHERS

Knowledge distillation is a technique used to transfer knowledge
from a large, complex model (teacher) to a smaller, more efficient
model (student) [15]. In this work, we extend the concept of knowl-
edge distillation by employing self-supervised learning (SSL) to
pre-train the teacher models, thus reducing the dependency on la-
beled data required for ASC tasks. The framework of knowledge
distillation with self-supervised teachers is shown in Figure 1.

3.1. Self-Supervised Teachers: BEATs

Self-supervised learning enables models to learn representations
from unlabeled data by solving pretext tasks. In this work, we
use the BEATs (Bidirectional Encoder Representations from Au-
dio Transformers) [8] as our self-supervised teachers. BEATs is an
SSL framework specifically designed for audio tasks. As shown in
Figure 1 (a), we follow the default configuration in [8] to SSL pre-
train the teacher models on the allowed large external dataset, Au-

2https://micirp.blogspot.com/
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System 5% 10% 25% 50% 100% Avg.
Baseline 42.4 45.3 50.3 53.2 57.0 49.6

BEATs(SSL)* 50.7 51.8 54.1 54.9 55.8 53.5
BEATs(SSL) 52.8 54.5 58.1 59.5 61.2 57.2

BEATs(SSL+SL) 54.3 56.6 59.7 60.4 62.1 58.6
5 Ensemble 55.7 57.7 61.2 62.5 64.3 60.3
10 Ensemble 55.6 57.9 61.4 62.6 64.2 60.3

Table 1: Accuracy of fine-tuned BEATs on the test set of TAU Ur-
ban Acoustic Scene 2022 Mobile development dataset [2]. SSL
indicates the BEATs are self-supervised pre-trained on AudioSet.
SL denotes the BEATs are additionally supervised fine-tuned on
AudioSet. * represents the encoder of BEATs is frozen during the
fine-tuning on ASC dataset. Top-1 accuracy is presented.

dioSet [9]. As shown in Figure 1 (b), the SSL pre-trained BEATs are
then fine-tuned on the labeled ASC dataset, with the encoder either
frozen or unfrozen. If the encoder is frozen, only the linear clas-
sifier is trained. Additionally, we also test the SSL+SL pre-trained
BEATs, where the SSL pre-trained BEATs are further supervised
fine-tuned on the AudioSet before fine-tuned on the ASC dataset.

As shown is Table 1, the SSL pre-trained BEATs with frozen
encoder achieve more than 50% accuracy on 5% training subset,
which outperforms the fully supervised baseline system by 8.3% in
accuracy. The SSL pre-trained BEATs without freezing naturally
get a higher accuracy and the SSL+SL pre-trained BEATs obtain
the best performance. We also test the ensemble models followed
the same configurations in [8] and get remarkable improvements.

3.2. Student: TF-SepNet-64

The Time-Frequency Separate Network (TF-SepNet) [10] is a deep
CNN architecture designed specifically for low-complexity ASC
tasks, achieving second place in last year’s competition. TF-SepNet
processes features separately along the time and frequency dimen-
sions using one-dimensional (1D) kernels, which reduces computa-
tional costs. The separate kernels also provide a larger effective
receptive field (ERF), allowing the model to capture more time-
frequency features.

To optimize model complexity, we have made several adjust-
ments for TF-SepNet-64, as illustrated in Table 3.2. First, the num-
ber of base channels is set to 64. Second, all Adaptive Residual
Normalization layers [5] are replaced with Residual Normalization
layers [3] to reduce the number of model parameters. Third, a Max-
pooling layer is added before the last TF-SepConvs block to further
reduce the feature size. In the finish, the total parameter number of
TF-SepNet-64 is 126,858. For an input feature size of (512, 64), the
maximum number of MACs per inference is 29.4196 MMACs.

3.3. Knowledge Distillation

We adopt the widely used knowledge distillation framework in pre-
vious years’ challenges [4, 7], which focuses on directly mimicking
the final predictions of the teacher model. As illustrated in Figure 1
(c), the knowledge transfer involves two main steps.

The input feature is a log-mel spectrogram x ∈ RF×T . For
the teacher path, once the self-supervised teachers are fine-tuned,
as shown in Figure 1 (b), the predictions on a specified training
subset are computed, serving as the teacher logits in the knowledge
distillation process. For the student path, the ASC student is trained

Output Shape Architecture k s p

1, F, T Input - - -
C/2, F/2, T/2 ConvBnRelu 3 2 1
2C,F/4, T/4 ConvBnRelu, g=C/2 3 2 1
C,F/4, T/4 TF-SepCovs ×2 - - -
C,F/8, T/8 MaxPool 2 2 0

1.5C,F/8, T/8 TF-SepCovs ×2 - - -
1.5C,F/16, T/16 MaxPool 2 2 0
2C,F/16, T/16 TF-SepCovs ×2 - - -
2C,F/32, T/32 MaxPool 2 2 0
2.5C,F/32, T/32 TF-SepCovs ×3 - - -
10, F/32, T/32 Conv 1 1 0

10, 1, 1 Avgpool - - -

Table 2: Architecture of the adjusted TF-SepNet-64 [10]. C, F , and
T respectively represent channels, frequency bins, and time clips of
feature maps. k, s, p and g separately denote kernel size, stride,
padding and group. The number of base channels is set to 64. The
number of parameters is 126,858 and the computational overheads
per inference is 29.4196 MMACs.

on the specified training subset using a combination of the ground
truth labels and the soft targets provided by the teacher model. Give
a vector of logits z as the outputs of the last classification layer of a
model, the soft targets are the probabilities that the input belongs to
the classes and can be estimated by a softmax function δ(·) as

δ(zi, τ) =
exp(zi/τ)∑
j exp(zj/τ)

(4)

where zi is the logit for the i-th class, and a temperature factor τ is
introduced to control the importance of each soft target. The train-
ing objective of student model is to minimize the divergence be-
tween the student’s predictions and the soft targets from the teacher,
as well as to correctly classify the labeled data. The overall loss
function for the student can be formulated as

L = λLCE(y, δ(zs)) + (1− λ)τ2LKL(δ(zt, τ), δ(zs, τ)) (5)

where LCE is the cross-entropy loss between the ground truth labels
and the student’s predictions, and LKL is the Kullback-Leibler di-
vergence between the soft targets from the teacher and the student’s
predictions. λ is a hyperparameter to balance the weight between
label and distillation loss.

4. TRAINING SETUP

We train TF-SepNet-64 for 150 epoch using Adam optimizer with
different initial learning rate for 5 subsets, 0.06 for split5, 0.05 for
split50 and 0.04 for all other splits. Stochastic Gradient Descent
with Warm Restarts (SGDR) [16] is applied with T0 =10 and Tmult

= 2, where the learning rate is periodically reset to initial value and
then decayed with cosine annealing. The batch size is set to 512.
α of Mixup [13] is set to 0.3. α and p of Freq-MixStyle [7] are
respectively set to 0.4 and 0.8. pdir of DIR augmentation [12] is
set to 0.4. We fix λ = 0.02 and τ = 2 for the knowledge distil-
lation as in [4]. After training, Post-Training Static Quantization is
implemented through the Intel Neural Compressor3 to quantize the
weights of model into INT8 data type.

3https://intel.github.io/neural-compressor
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System t 5% 10% 25% 50% 100% Avg.
lr - 0.006 0.004 0.004 0.005 0.004 -

Vanilla 0 44.7 50.0 54.9 58.7 62.3 54.1
S1 1 47.4 52.1 57.5 61.1 62.4 56.1
S2 3 49.0 52.3 57.9 60.7 62.9 56.6
S3 12 47.9 52.3 57.5 60.1 62.8 56.1

Table 3: Accuracy of submitted systems on the test set of TAU Ur-
ban Acoustic Scene 2022 Mobile development dataset [2]. S1-S3
indicates the submitted system 1 to system 3. The difference be-
tween submitted systems is the number of ensemble teachers, de-
noted as t. Different initial learning rates lr are applied for 5 sub-
sets. Top-1 and quantized accuracy is presented.

5. SUBMISSION

The submission systems are presented in Table 3. We submitted
a total of three systems, each with the same complexity. The sys-
tems differs in the number ensemble teachers t, used in the knowl-
edge distillation process. “Vanilla” is a vanilla TF-SepNet-64 used
for comparison, where knowledge distillation is not applied during
training. Nevertheless, it still outperforms the baseline by 4.5% in
average accuracy. For system 1, the teacher logits come from a
single SSL+SL pre-trained BEATs. The teacher logits of system
2 consist of an ensemble of a SSL*, a SSL and a SSL+SL pre-
trained BEATs. The teacher logits of system 3 include an ensemble
of a SSL*, a SSL and 10 SSL+SL pre-trained BEATs. System 2
achieves the best performance, with an average accuracy of 56.6%.

6. CONCLUSION

In this report, we introduce self-supervised learning (SSL) tech-
niques to address the challenge of data-efficient low-complexity
acoustic scene classification (ASC). We pre-train BEATs on Au-
dioSet as self-supervised teachers and then transfer knowledge to
the low-complexity student, TF-SepNet-64, through a knowledge
distillation framework. The experimental results demonstrate the
effectiveness of self-supervised teachers in reducing the depen-
dency on labeled data, providing a pathway for developing robust
and efficient ASC systems with limited labeled data.
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