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ABSTRACT 

In this technical report, we present our submission system 

for DCASE 2024 Task 4: Sound Event Detection in Domestic 

Environments with Heterogeneous Training Dataset and Poten-

tially Missing Labels. Firstly, our proposed system employs a 

full-frequency dynamic convolution (FFD-Conv) network based 

on the Mean Teacher semi-supervised learning framework. Sec-

ondly, we utilize a two-stage training framework, where in the 

first stage, a large unlabeled in-domain set is converted into 

pseudo-weak labels to balance the number of strongly labeled 

datasets in the second stage. Additionally, we employ various 

methods such as data augmentation, post-processing, and model 

ensembling to further enhance the generalization capability of the 

system. Ultimately, our system achieved a PSDS-scenario1 score 

of 0.535 and a macro-average pAUC score of 0.697 on the vali-

dation set. 

Index Terms— Sound event detection, DCASE2024, 

Mean Teacher, Semi-supervised learning, CRNN, two-

stage framework 

1. INTRODUCTION 

This technical report describes our submitted systems for 

DCASE 2024 Task 4: Sound Event Detection in Domestic Envi-

ronments with Heterogeneous Training Dataset and Potentially 

Missing Labels. The target of this task is to provide the event 

class along with the event time boundaries, given that multiple 

events can be present and may overlap in an audio recording. 

This task aims to explore how to leverage training data with 

varying annotation granularity (temporal resolution, soft/hard 

labels). The baseline network model adopts a Convolutional 

Recurrent Neural Network (CRNN) [1] and uses the Mean 

Teacher (MT) [2] approach. Additionally, the baseline utilizes 

the pre-trained BEATs model to extract audio embeddings, 

which has helped the model achieve better performance com-

pared to previous years. 

In our proposed approach, there are several major improvements. 

First, we replaced the traditional CNN blocks with full-frequency 

dynamic convolution (FFD-Conv) [3] blocks. This structure 

processes the channel and spatial dimensions separately through 

two branches. These blocks can extract more features from the 

audio, improving the accuracy of classification and time localiza-

tion. Second, we employed a two-stage framework to convert 

unlabeled data into pseudo-weak labeled data for training. This 

method addresses the issue of the limited number of weak labels 

and the insufficient proportion of strongly labeled data. Addi-

tionally, we trained a separate RNN model using BEATs pre-

training and ensembled multiple high-performing models to 

further enhance the PSDS1 performance. 

2. PROPOSED METHODS 

2.1. Network architecture 

We used a total of three models, as described below: 

Model 1: We adopted a Convolutional Recurrent Neural Net-

work (CRNN), which follows the same structure as the baseline 

[4]. The CNN part consists of 7 layers, with 16, 32, 64, 128, 128, 

128, and 128 filters in each layer, respectively. Each layer has a 

3x3 kernel size and uses average pooling with sizes of [2,2], 

[2,2], [2,1], [2,1], [2,1], [2,1], and [2,1]. The RNN employs 2 

layers of 128 bidirectional gated recurrent units (Bi-GRU) [5]. 

Additionally, we utilized the pre-trained BEATs model [Citation 

3] in our system. Since the sequence length of the extracted 

frame-level features differs from that of the CNN features, adap-

tive average pooling is used to unify the sequence length. Finally, 

these features are fed into an RNN + MLP classifier. 

Model 2: We used FFD-CRNN. This network employs a sepa-

rate branch to predict kernels for each frequency band, with the 

kernel content based on the input feature. We replaced the last 6 

layers of the 7-layer CNN in the baseline CRNN network with 

FFD-convolutional blocks and adjusted the number of filters in 

each layer as shown in Figure 1. Like Model 1, we utilized the 

BEATs pre-trained model for feature fusion. 

Model 3: We completely removed the CNN part of the CRNN 

network and used 3 layers of 512 bidirectional gated recurrent 

units (Bi-GRU) along with the frame embeddings from the 

BEATs pre-trained model. 
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Figure 1: FFD-CRNN architecture with using pretrained 

BEATs, where BS denotes batch size. 

2.2. Two-stage framework 

During training, we found that the weakly labeled dataset was 

significantly smaller than the other datasets (only 1578 clips). 

This resulted in the weakly labeled data being exhausted while 

only a small portion of the strongly labeled dataset could be used. 

We believed that the insufficient proportion of the strongly la-

beled dataset would negatively impact the final PSDS1 score, so 

we adopted a two-stage framework. 

Like [6], in the first stage, we transformed the strongly labeled 

data into weakly labeled data by removing onset and offset in-

formation. This data was then combined with other datasets and 

fed into the FFD-Conv network mentioned in Section 2.1 for 

training. During training, we employed the weak SED method [7], 

which involves making predictions solely on weak labels and 

setting the timestamp length to the duration of the entire audio 

clip to maximize the accuracy of weak label predictions. Subse-

quently, we used the unlabeled data with the model trained in the 

first stage to obtain pseudo-weak labels. 

In the second stage, we trained the FFD-Conv network using 

strongly labeled data, soft labels, and the pseudo-weak labels 

obtained from stage one. Additionally, we employed weak pre-

diction masking [7] to enhance strong predictions during training. 

2.3. Data Augmentation 

During the training process, data augmentation strategies includ-

ing mixup[8], frameshift[9], and FilterAugment[7] were em-

ployed. Mixup randomly selects two samples-label pairs to gen-

erate new data for improving model generalization. Frameshift 

moves features and labels along the time axis, and FilterAugment 

applies random weights to different frequency bands of the Mel 

spectrogram by randomly dividing the frequency range into 

several sub-bands, which helps train SED models to recognize 

time frequency patterns from a wider frequency range. 

3. EXPERIMENT 

3.1. Dataset 

We trained and evaluated the proposed model on the develop-

ment dataset of DCASE2024 Task 4. Unlike DCASE2023 Task 

4A, DCASE2024 Task 4 introduces the MAESTRO Real dataset 

[10] in addition to the DESED dataset [11]. The MAESTRO Real 

dataset includes soft-labeled strong annotations collected from 

crowdsourced annotators in various acoustic environments. Due 

to the approximately 3-minute duration of each audio segment in 

this dataset, the segments were sliced into 10-second chunks. The 

development set comprises several different datasets, including: 

Weakly labeled training set: 1578 clips 

Unlabeled in domain training set: 14412 clips 

Synthetic strongly labeled training set: 10000 clips 

Synthetic strongly labeled validation set: 2500 clips 

Strongly labeled validation set: 1168 clips 

Strong-label Audioset dataset: 3470 clips 

Maestro real training set: 7503 clips 

Maestro real validation set: 3474 clips 

We used all unlabeled in-domain training set, synthetic strongly 

labeled training sets, partial weakly labeled training sets, and 

partial MAESTRO Real training set to train the model. All syn-

thetic strongly labeled validation sets, partial weakly labeled 

training sets, and partial MAESTRO Real training sets were used 

as validation sets. Strongly labeled validation sets and 

MAESTRO Real validation set were used to evaluate the perfor-

mance of the model. 

3.2. Experiment setup 

The log-mel spectrum is used as the input feature to the SED 

system. We trained the whole system for 200 epochs and the 

learning rate warms up in the first 50 epochs with the initial 

learning rate of 0.001. The batch size is set to 56. 

3.3. Result and submissions 

We evaluate the system using a threshold-independent imple-

mentation of PSDS[12] and macro-average pAUC. The best 

system achieves 0.535 for PSDS-scenario1 and 0.697 for macro-

average pAUC on the validation set, outperforming the results of 

0.495 and 0.652 in the baseline system. We submitted 4 systems 

and the results are shown in Table 1. 
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Table 2: Experimental results. 

System Model Data Aug Two-Stage Ensemble PSDS1 pAUCm 

Baseline  Only mixup   0.503 0.662 

1 1 ✔   0.521 0.659 

2 2 ✔ ✔  0.525 0.651 

3 3 ✔ ✔  0.514 0.697 

4 1+2+3 Only mixup  ✔ 0.535 0.677 

 

4. CONCLUSION 

In this technical report, we describe our system submission for 

DCASE 2023 Challenge Task 4A. We primarily employed FFD-

Conv to replace conventional CNN layers and utilized a two-

stage framework to augment the quantity of weak labels. During 

training, we employed techniques such as data augmentation and 

weak prediction masking to enhance system performance. The 

system achieved a PSDS1 score of 0.535 and a macro-average 

pAUC score of 0.697 on the validation set. 
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