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ABSTRACT 

This technical report describes our proposed system for Task 1 

of Detection and Classification of Acoustic Scenes and Events 

(DCASE) 2024. We propose a data-efficient low-complexity 

acoustic scene classification method, which utilizes a parallel 

attention broad-residual network that consists of four parts (i.e., 

the modules of pre-processing, fusion, global and local contex-

tual information extraction). We integrate the broadcast residual 

learning into the network to enhance its ability for extracting 

local contextual information. To further improve accuracy and 

reduce complexity, we integrate other techniques into our meth-

od, such as knowledge distillation, data augmentation, adaptive 

residual normalization, and quantization-aware training. There 

are five training subsets that contain approximately 5%, 10%, 

25%, 50%, and 100% of the audio snippets in the training da-

taset. Using a subset of the five training subsets above as train-

ing data to construct a system, we obtain five systems. The 

accuracy scores obtained by these five systems on the evaluation 

samples of the development dataset are 47.14%, 52.38%, 58.04%, 

60.88%, and 63.7% respectively. 

Index Terms— Broadcast residual learning, attention 

mechanism, knowledge distillation, data augmentation, adaptive 

residual normalization 

1. INTRODUCTION 

The task of acoustic scene classification (ASC) is to classify 

each audio sample into one pre-defined class of acoustic scenes. 

ASC technique is beneficial for numerous applications, such as 

wearable devices, robotics, and smart home devices. In recent 

years, the DCASE challenge has received significant attention. 

ASC, as a main task of the DCASE challenge, has attracted 

considerable interest and undergone extensive research [1]-[5]. It 

is a critical pre-processing step for many audio-video tasks, such 

as sound event detection [6]-[9], video content analysis [10], [11], 

speaker diarization and recognition [12]-[15]. 

The methods using convolutional neural network (CNN) and 

its variants are dominant solutions for low-complexity ASC. Tan 

et al [16] designed a CNN with blueprint separable convolution 

[17]. The model with convolutional architecture is good at cap-

turing local contextual information (LCI) from input audio sam-

ples, but lacks the ability to effectively extract global contextual 

information (GCI). These two kinds of information above are 

complementary to each other and have been proved to be benefi-

cial for improving the performance in other audio processing 

tasks [18]. Therefore, based on [16], we design a parallel atten-

tion broad-residual network (PABRN) to extract both GCI and 

LCI and fuse them to improve the classification performance of 

the ASC method. The structure of PABRN is similar to that of 

parallel attention-convolution network (PACN) in [19], but they 

differ in the branches used to extract LCI. 

This technical report describes our work for Task 1 of DCASE 

2024. The rest of this report is organized as follows. Section 2 

introduces our method for data-efficient low-complexity ASC. 

Experiments on the development data are presented in Section 3 

and conclusions are drawn in Section 4. 

2. THE METHOD 

The basic steps of the proposed method are as follows. A 

large-size teacher model is first trained using audio clips in the 

training dataset. Then, a small-size student model is generated 

under the guidance of the pretrained teacher model. Namely, the 

knowledge distillation (KD) is used to train the student model 

which is learned from the teacher model. In addition, the data 

augmentation (DA) is applied to audio clips to increase the data 

diversity for training both teacher and student models. The stu-

dent model is designed as a PABRN, while the teacher model is 

an ensemble model of Patchout faSt Spectrogram Transformer 

(PaSST) [20] and PACN.  

2.1. Parallel Attention Broad-Residual Network 

The framework of the proposed PABRN is illustrated in Fig. 1, 

which comprises four key components: pre-processing module, 

LCI extraction module, GCI extraction module and fusion mod-

ule. By simultaneously utilizing GCI and LCI, PABRN aims to 

enhance the ASC performance. Specifically, it has two computa-

tionally efficient modules to capture these two types of infor-

mation. The preprocessing module transforms the log-Mel spec-

trogram of each audio clip into features suitable for GCI and LCI 
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extraction. Finally, the fusion module integrates the extracted 

GCI and LCI, leveraging both for obtaining accurate classifica-

tion results. The difference between the proposed PABRN and 

the PACN in [19] is the LCI extraction module. Hence, we 

describe the LCI extraction module of the PABRN here, and 

detailed descriptions of other three modules can be found in [19]. 

LCI extraction GCI extraction

+

Log Mel-spectrum

+

Pre-processing

Fusion

Sub-module 4

Sub-module 3

Sub-module 2

Sub-module 1

 
Fig. 1 The framework of the proposed parallel attention broad-

cast-residual network. BSConv: Blueprint separable convolution; 

ReLU: Rectified Linear Unit; ARN: Adaptive residual normali-

zation; BC-ResBlocks: Broadcast residual blocks; MLP: Multi-

layer perceptron; FC: Fully-connected; LCI: Local contextual 

information; GCI: Global contextual information. 

 

Broadcast residual learning [21] extracts two feature maps 

specific to frequency and temporal dimension through frequen-

cy-wise 2D and temporal-wise 1D convolution. Inspired by the 

success in [22], we design a new LCI extraction module based 

on BC-ResBlocks to replace the LCI extraction module in the 

PACN [18]. The LCI extraction module in the PABRN consists 

of twelve BC-ResBlocks. As illustrated in Fig. 1, these twelve 

BC-ResBlocks are contained in four sub-modules. Sub-modules 

1, 2, 3 and 4 contains BC-ResBlocks 1 to 2, BC-ResBlocks 3 to 

4, BC-ResBlocks 5 to 8, and BC-ResBlocks 9 to12, respectively.  

The parameters settings of these twelve BC-ResBlocks are 

presented in Table 1. Features will undergo repeated averaging 

and expansion operations in each sub-module for effectively 

extracting LCI from log Mel-spectrum. 

 

Table 1: The parameters settings of BC-ResBlocks in the LCI 

extraction modules. Each row is a sequence of one or more iden-

tical BC-ResBlocks repeated n times with the input shape of 

channel × frequency × time (i.e., C×F×T), total time steps W, and 

the number of output channels c. Changes in number of channels 

and down-sampling by stride s belong to the first block of each 

sequence of BC-ResBlocks. The temporal convolutions in all 

BC-ResBlocks use dilation of d. 
Input Sub-module n c s d 

C×F×T 1 2 C/2 1 1×1 
C/2×F×T 2 2 3C/2 2,1 (1, 2) 

3C/2×F/2×T 3 4 C 2,1 (1, 4) 
C×F/4×T 4 4 C 1 1×8 

2.2. Adaptive Residual Normalization 

The adaptive residual normalization (ARN) technique dynami-

cally adjusts the weights of residual connections during the train-

ing process. As a result, the model can adapt to training data and 

optimization objectives, and thus the generalization performance 

and stability of the model can be improved. Batch-instance nor-

malization (BIN) [23] is applied along the frequency dimension 

for generating device-specific features. Trainable parameters are 

incorporated for controlling the trade-off between normalization 

for different devices and frequencies. The introduction of ARN 

[24] allows the network to learn how to normalize input data 

based on specific tasks and input distributions. 

2.3. Data Augmentation 

In order to prevent overfitting and enhance robustness, we em-

ploy various DA methods during training in the time-frequency 

domain. These DA methods are presented as follows.  

• Mix-style: It is an approach for manipulating instance-level 

feature statistics [25]. It relies on probabilistic mixing of cross-

source domain training samples. The application of Mix-style can 

be adjusted using the parameter p. The parameter p controls the 

likelihood of its application to a batch of recordings. Through 

careful parameter tuning, we can achieve better performance. 

• SpecAugment: It encompasses functional warping, frequency 

channel masking blocks, and timestep masking blocks [26]. We 

implement two masking lines for each dimension, with a maxi-

mum thickness of 2 for each line.  

• Spectrum Modulation: In one system of the DCASE 2022 

challenge [27], spectrum modulation is proved to be effective. we 

adopt the same method of spectrum modulation. As most of the 

provided datasets are recorded using device A, resulting in an 

imbalance of data, we address this issue by introducing a fre-

quency energy difference to the data recorded by non-device A. 

2.4. Knowledge Distillation 

KD is proved to be effective for the ASC task for maintaining 

the performance even with low complexity. Using the same DA 

method on the five officially provided training subsets of differ-

ent sizes, we train five high-complexity PACN models and five 

PaSST models respectively. The PACN and PaSST models 

trained on the same subset are grouped together as the teacher 

models corresponding to that subset. Student models use PACN 

and PABRN models with different parameter configurations. 

Finally, we obtain 20 models on five training subsets and each 

training subset is used to generate four models. 

2.5. Quantization Aware Training 
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To reduce the number of model parameters, we employ the 

quantization-aware training (QAT) approach [28] which per-

forms floating-point calculations during training. However, the 

QAT approach simulates the effect of INT8 through a fake 

quantization module that includes clamping and rounding. We 

utilize the QAT plugin provided by the PyTorch-lightning li-

brary for quantization-aware training. We use default values for 

all QAT settings and applied layer fusion to all convolution-

batch normalization-ReLU sequences in the model. After com-

pleting QAT, we apply quantization to fix the model parameter 

variable type to INT8 and perform inference. 

3. EXPERIMENTS 

This section describes experimental setups and results in detail.  

3.1. Experimental Setups 

The development set contains data from 10 cities and 9 devices: 

3 real devices (A, B, and C) and 6 simulated devices (S1-S6). 

Data from devices B, C, and S1-S6 is composed of randomly 

selected segments from the simultaneous recordings. Therefore, 

all overlap with the data from device A, but not necessarily with 

each other. The total amount of audio in the development set is 

64 hours. Unlike previous competitions, participants are required 

to develop systems for five increasingly challenging scenarios 

that progressively limit the available training data. The organiz-

ers provide five predefined subsets/splits of the development-

training dataset, which are 100%, 50%, 25%, 10%, and 5% of the 

original development-training set size. The 100% subset includes 

all segments of the development-training split. 

Audio clips are split into frames by a Hamming window whose 

length is 4096 with 1/6 overlapping. Short-time Fourier trans-

form is then performed on each frame for obtaining linear power 

spectrum which is smoothed with a bank of triangular filters for 

extracting log Mel-spectrum. In addition, the delta coefficients of 

log Mel-spectrum are calculated and concatenated with the log 

Mel-spectrum to form the input audio feature. The final size of 

input audio feature is: 256×65×2, where 256, 65 and 2 denote 

numbers of frequency-band, frame and channel, respectively. 

As shown in Table 2, we design three systems on five training 

subsets with various sizes. We train the models for 100 epochs by 

the Adam optimizer [29] with batch size of 16. Learning rate is 

set to linearly increase from 0 to a value in the first ten epochs, 

and then decays to 0 with cosine annealing for the rest epochs.  

 

Table 2: The differences and complexities of the three different 

systems. Dim represents the feature dimension used to train the 

model. Mlp represents the expansion ratio of the layer of multi-

layer perceptron. Sta represents the number of stages of the LCI 

extraction module based on broadcast residual learning. PN and 

MACs denote parameter number and multiply-accumulate opera-

tions and multiply-add operations, respectively.  

 

As shown in Table 3, the configuration of the training parame-

ters of the system is adjusted on different training subsets. 

Table 3: The system has adjusted the basic hyperparameters for 

five training subsets with different sizes. LR stands for learning 

rate, while λ and T represent the weight coefficient and tempera-

ture coefficient of KD, respectively. 

3.2. Experimental Results 

As shown in Table 4, we train three different models using 

each of five training subsets, including 5%, 10%, 25%, 50%, and 

100%, respectively, and obtain a total of 15 models. The teacher 

models that are used for generating the student models are also 

trained on the corresponding training subsets only. We then 

evaluated these models on the validation set of the development 

dataset, which contain 29,680 audio clips. We calculate the 

overall accuracy of each model and compare it to the baseline 

system. The performance of the models trained on each subset is 

improved. Among them, the five models that are trained based 

on the BC-PACN-64 system have the best performance. 

 

Table 4: on set. The accuracy obtained by the baseline and three 

proposed systems evaluated on the development validati 

 

Fig. 2 shows the accuracy of the best results for each class ob-

tained by the BC-PACN-64 system on the 100% training subset. 

Although the accuracy scores for bus, park, and street traffic are 

relatively high, the street pedestrians are similar to other scenes 

due to the diversity and complexity of sounds, making them the 

most likely to be confused with other scenes. 

 
Fig. 2: Confusion matrix of the BC-PACN-64 system on the 

100% training subset. 

Model Dim Mlp Sta PN (kilo) MACs (M) 

BC-PACN-48 48 2 4 69.78 10.06 

BC-5-PACN-48 48 2 5 122.29 11.21 

BC-PACN-64 64 2 4 117.87 16.59 

Subset 5% 10% 25% 50% 100% 

LR 0.001 0.001 0.002 0.003 0.005 

λ 0.226 0.22 0.2 0.18 0.165 

T 1.5 1.5 1.5 2 2 

Subset 5% 10% 25% 50% 100% 

Baseline 42.40% 45.29% 50.29% 53.19% 56.99% 
BC-PACN-48 46.44% 52.61% 57.41% 59.75% 61.95% 

BC-5-PACN-48 46.53% 53.13% 57.05% 60.18% 61.55% 

BC-PACN-64 47.14% 52.38% 58.04% 60.88% 63.70% 
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4. CONCLUSIONS 

In this technical report, we describe three systems for Task 1 

of the DCASE challenge 2024. We propose a data-efficient low-

complexity ASC method primarily based on a PABRN that 

simultaneously extracts both LCI and GCI. We integrate many 

techniques, such as KD, DA, ARN, and QAT, into our method 

to enhance the system performance. Our method achieved classi-

fication accuracy higher than the baseline method while meeting 

complexity requirements. 
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