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ABSTRACT 

This technical report presents a data-efficient and low-com-

plexity acoustic scene classification (ASC) system developed for 

Task 1 of the DCASE2024 Challenge. The primary objective is to 

create ASC models that perform effectively with limited labeled 

data and minimal computational resources, addressing practical 

constraints in real-world applications. Our proposed system inte-

grates Squeeze-and-Excitation (SE) layers within the baseline net-

work and employs a curriculum learning approach for training. 

SE layers enhance feature representation by recalibrating channel-

wise feature responses, while curriculum learning structures the 

training process by progressively introducing more complex ex-

amples, facilitating better model generalization and robustness. 

Experimental results demonstrate significant improvements in 

classification accuracy across various data splits, with our system 

outperforming the baseline by up to 7% on the development da-

taset. The approach promises to advance the accessibility and 

scalability of ASC technologies in resource-constrained environ-

ments. 

Index Terms— Acoustic scene classification, SE-

Layer, curriculum learning, Freq-MixStyle 

1. INTRODUCTION 

The DCASE2024 Challenge's Task 1 focuses on data-effi-

cient and low-complexity acoustic scene classification (ASC). 

This task is part of the broader effort to advance the field of envi-

ronmental sound recognition, aiming to develop systems capable 

of accurately classifying acoustic scenes with limited data and 

computational resources. Acoustic scene classification involves 

identifying the environment in which an audio recording was made, 

such as a park, a busy street, or a home. 

The primary objective of Task 1 is to encourage the develop-

ment of ASC systems that are both data-efficient and computation-

ally lightweight. Traditional ASC systems often require large 

amounts of labeled data and significant computational power, 

which can be impractical for real-world applications, particularly 

in resource-constrained environments. This task challenges partic-

ipants to innovate solutions that overcome these limitations, fos-

tering advancements that can make ASC technology more acces-

sible and scalable. 

Acoustic scene classification has numerous practical applica-

tions, ranging from enhancing the context-awareness of smart de-

vices to improving surveillance systems and facilitating environ-

mental monitoring. By focusing on data efficiency and low com-

plexity, this task addresses critical barriers to the widespread de-

ployment of ASC systems, such as the need for extensive labeled 

datasets and the high computational cost of model inference. 

Achieving these goals can lead to more versatile and widely appli-

cable ASC solutions. 

Participants in Task 1 face several challenges, including: 

·Data Efficiency: Designing models that can learn effec-

tively from limited labeled data. 

·Low Complexity: Ensuring that models are computation-

ally efficient, enabling their deployment on devices with limited 

processing power. 

·Robustness and Accuracy: Maintaining high classifica-

tion accuracy despite the constraints on data and computational re-

sources. 

These challenges require innovative approaches to model de-

sign, including the use of transfer learning, data augmentation 

techniques, and novel architectures tailored for efficiency. 

In this technical report, we embedding the Squeeze-and-Ex-

citation layer(SE-Layer) into the baseline's network and training it 

using a curriculum learning approach. 

2. THE SQUEEZE-AND-EXCITATION LAYER 

The goal of squeeze-and-excitation layer is to improve the 

quality of representations produced by a network by explicitly 

modelling the interdependencies between the channels of its con-

volutional features. It proposed a mechanism that enables the net-

work to carry out feature recalibration, thereby learning to lever-

age global information to selectively highlight informative fea-

tures and dampen those that are less useful. 

The structure of the SE-layer is depicted in Fig. 1. For any 

given transformation 𝐹𝑡𝑟 mapping the input 𝑋 to the feature maps 

𝑈 where 𝑈 ∈  𝑅𝐻×𝑊×𝐶 , e.g. a convolution, we can construct a 

corresponding SE-layer to perform feature recalibration. The fea-

tures 𝑈 are first passed through a squeeze operation, which pro-

duces a channel descriptor by aggregating feature maps across 

their spatial dimensions (𝐻 × 𝑊). The function of this descriptor 

is to produce an embedding of the global distribution of channel-

wise feature responses, allowing information from the global 
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receptive field of the network to be used by all its layers. The ag-

gregation is followed by an excitation operation, which takes the 

form of a simple self-gating mechanism that takes the embedding 

as input and produces a collection of per-channel modulation 

weights. These weights are applied to the feature maps 𝑈 to gen-

erate the output of the SE-layer which can be fed directly into sub-

sequent layers of the network. 

 

Fig. 1.A Squeeze-and-Excitation layer. 

 

3. THE NETWORK 

The proposed network is modified based on the baseline. The 

network of baseline is the CP-Mobile (CPM), which consists of 

CPM blocks. Fig. 2 depicts the structure of a CPM block consist-

ing of two pointwise and a depthwise convolution. The depthwise 

convolution operates on the expanded channel representation, 

which has the size of the number of block input channels times the 

scaling factor EXP. We differentiate between Transition, Standard 

and Spatial Downsampling blocks (CPM blocks T, S, D).CPM 

block T increases the channel dimension, uses no residual connec-

tion and can be used with a strided depthwise convolution. CPM 

blocks S and D have matching input and output channel dimen-

sions and use a residual connection. CPM block D uses average 

pooling with a kernel size of 3 and a stride of 2 on the shortcut path 

to match the spatial di mensions of the block output.  

 

Fig. 2.CPM blocks: (1) Transition Block (input channels ̸= 

output channels), (2) Standard Block, (3) Spatial 

Downsampling Block (S denotes stride) 

Fig. 3 depicts the structure of the proposed network. We em-

bed the SE-Layer before the ReLU activation function at the end 

of each CPM block, and in the original CPM block, here is a GRN 

block for computing the normalized values for each channel. 

 

4. CURRICULUM LEARNING 

Curriculum Learning is an innovative approach in the realm 

of machine learning and artificial intelligence, inspired by the hu-

man educational process. Just as students learn more effectively 

when presented with material in a structured and progressive 

manner, Curriculum Learning advocates for a similar strategy in 

training models. By organizing training data from simpler to more 

complex examples, models can develop a robust understanding of 

basic concepts before tackling more intricate patterns. This 

method not only accelerates the learning process but also en-

hances the overall performance and generalization capabilities of 

AI systems. 

The curriculum learning algorithm we use is divided into two 

main parts. The first part is a scoring function that determines the 

"difficulty" or "complexity" of each example in the data. The scor-

ing function makes it possible to sort the training examples by 

difficulty and present the easier (and possibly simpler) examples 

to the network first.  

 

Fig. 3.SE block 

Regarding scoring functions, most curriculum learning algo-

rithms can be categorized into two types, transfer learning or boot-

strapping. What we use is the latter, bootstrapping. Bootstrapping 

means we sort the dataset with the network we will train, without 

transfer learning or pre-training. 

The second part is the pacing function. The pacing function 

in Curriculum Learning is a critical component that dictates the 

rate at which a machine learning model transitions from simpler 

to more complex tasks. Much like a teacher who adjusts the diffi-

culty of lessons based on a student's progress, the pacing function 

dynamically manages the progression of training examples to op-

timize learning. This function is essential for balancing the trade-

off between consolidating foundational knowledge and advancing 

to more challenging concepts. By carefully controlling the pace, 

models can achieve better performance and generalization, avoid-

ing the pitfalls of being overwhelmed by complexity too soon or 

stagnating on overly simplistic tasks. 

5. EXPERIMENTS 

3.1. Experimental Setup 

The development dataset consists of training subset and vali-

dation subset. The development dataset contains audio recordings 

from 10 cities and 9 devices: 3 real devices (A, B, C) and 6 simu-

lated devices (S1-S6). Audio recordings recorded by devices B, C, 
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and S1-S6 are composed of audio segments that are randomly se-

lected from simultaneous recordings. Hence, all of these audio re-

cordings overlap with the audio recordings from device A, but not 

necessarily with each other. The total amount of audio recordings 

in the development dataset is 64 hours. Some devices appear only 

in the validation subset. 

For training the model, audio input is resampled to 32 kHz 

and converted to mel spectrograms using a 4096-point FFT with a 

window size of 96 ms and a hop size of approximately 16 ms, fol-

lowed by a mel transformation with a filterbank of 256 mel bins. 

The system is trained for 200 epochs using the SGD  optimizer and 

a batch size of 256. Freq-MixStyle is applied to tackle the device 

mismatch problem, and time rolling of the waveform and fre-

quency masking are used to augment the training data. The base-

line system requires 29.4 MMACs for the inference on a one-sec-

ond audio clip. The memory required for the model parameters 

amounts to 127.8 kB, resulting from the 63,900 parameters used 

in 16-bit precision (float 16). 

 

3.2. Experimental Results 

The validation set for the development dataset contains 29680 

audio examples. We calculate the overall accuracy and the Confu-

sion Matrix. Table. 1. Depicts our experimental results. Fig. 4.de-

picts the Confusion Matrix. 

 

Split Parameters MACs BL-Acc  Acc Log loss  

100 63900 29.42 56.99±1.11 57.27 1.215 

50 63900 29.42 53.19±0.68 56.84 1.731 

25 63900 29.42 50.29±0.87 53.82 1.453 

10 63900 29.42 45.29±1.01 48.74 1.624 

5 63900 29.42 42.40±0.42 43.25 1.763 

BL 61148 29.42    

Table. 1. Results of experiments on different splits 

 

Fig. 4.(a) Accuracy confusion matrix for the 5% split 

model 

 

Fig. 5.(b) Accuracy confusion matrix for the 10% split 

model 

 

 

Fig. 6.(c) Accuracy confusion matrix for the 25% split 

model 
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Fig. 7.(d) Accuracy confusion matrix for the 50% split 

model 

 

 

Fig. 8.(e) Accuracy confusion matrix for the 100% split 

model 

 

6. CONCLUSION 

In this technical report, we proposed a system for the data-effi-

cient and low-complexity acoustic scene classification(ASC).  It’s 

for Task 1 of DCASE challenge 2024. This system was developed 

based on the Challenge baseline system, with the SE-Layer em-

bedded in the system and trained using the Curriculum Learning 

algorithm. The accuracy of the submitted system was up to 7% 

higher than the baseline of the development dataset. 
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