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ABSTRACT

This technical report outlines the efforts of KT Corporation’s
Acoustic Processing Project for addressing language-queried audio
source separation (LASS), DCASE 2024 Challenge Task 9. The
objective of this work is to separate arbitrary sound sources using
a text description of the desired source. We propose three systems,
each with the same model architecture but different training meth-
ods. These systems use the FLAN-T5 model as the text encoder
and the ResUNet model as the separator. To train these systems,
we introduced three loss functions: L1 loss in the time domain,
multi-scale mel-spectrogram loss in the frequency domain, and con-
trastive loss, with a loss balancer to stabilize the training. Utilizing
the Contrastive Language-Audio Pre-training (CLAP) model, we
designed three contrastive losses: audio-to-text (A2T-CL), audio-
to-audio (A2A-CL), and audio-to-multi (A2M-CL). The first sys-
tem was trained with A2T-CL, the second with both A2A-CL and
A2T-CL, and the third with A2M-CL. These systems achieved
signal-to-distortion ratio (SDR) of 7.030, 7.124, and 7.139, respec-
tively, showing nearly a 30% improvement over the baseline SDR
of 5.708 provided by the challenge.

Index Terms— Source Separation,

1. INTRODUCTION

In real-world scenarios, unintended and uncontrollable events fre-
quently occur. During on-location content creation, numerous fac-
tors are managed to capture the desired material. Nevertheless,
unexpected elements often appear in the final output, making the
pursuit of perfection both costly and challenging. If an AI sys-
tem could separate the desired result from an imperfect one, these
costs could be significantly reduced. However, this is quite difficult.
This challenge is especially pronounced when the target is audio.
Consequently, research in this field is limited, and existing perfor-
mance levels are suboptimal. [1, 2] DCASE 2024 Challenge Task
9: Language-Queried Audio Source Separation (LASS) [3] targets
this issue. This task focuses on developing the system that separates
the desired sound from a source with extraneous elements, based on
a text description about the intended audio. This report details the
models and methodologies employed to tackle this task.

Our system comprises two models: a text encoder and a sep-
arator. For the text encoder, we use FLAN-T5 [4], an enhanced
version of the text-to-text transfer transformer (T5) model [5]. The
separator is a ResUNet model [6, 7] that takes an audio waveform

Figure 1: Overall system.

(a mixture of a target audio clip and a noise audio clip) and a text
embedding as inputs, producing a separated audio waveform condi-
tioned on the text embedding. To train this system, we introduced
three loss functions, and utilized a loss balancer [8] to stabilize the
training. First, L1 loss was employed to align the separated au-
dio waveform with the target audio waveform in the time domain.
Second, to optimize performance in both the time and frequency do-
mains, we utilized multi-scale mel-spectrogram loss [9, 10, 8, 11],
applied across multiple time scales in the mel-spectrogram. Lastly,
contrastive loss was introduced in addition to L1 loss and spectro-
gram loss.

We propose three systems trained with the same model but
utilizing different contrastive losses. To implement contrastive
loss, we embedded audio and text using a pre-trained Contrastive
Language-Audio Pre-training (CLAP) model [12]. We designed
three distinct contrastive losses using target audio, noise audio, tar-
get text, and noise text for output audio. The first system was trained
with audio-to-text contrastive loss (A2T-CL). The second system
was trained using audio-to-audio contrastive loss (A2A-CL) and
A2T-CL. The third system integrated A2A-CL and A2T-CL into a
single audio-to-multi contrastive loss (A2M-CL). These three sys-
tems achieved signal-to-distortion ratio (SDR) of 7.030, 7.124, and
7.139, respectively, showing nearly a 30% improvement over the
baseline model’s SDR of 5.708 provided in the challenge.

2. METHODS

2.1. Overview

Our system consists of two models: a text encoder and a separator.
For the text encoder, we utilize FLAN-T5 [4], an enhanced version
of the text-to-text transfer transformer (T5) model [5]. FLAN-T5
is initialized with a T5 checkpoint and fine-tuned with instructions
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Figure 2: 3 types of contrast loss.

and chain-of-thought reasoning, enabling it to extract robust text
embeddings from text descriptions with its strong text representa-
tion capacity.

The separator is the ResUNet model [6, 7], an advanced version
of the UNet model. The ResUNet model takes a mixed audio wave-
form and text embedding as input and separates the audio waveform
to match the text from the mixed audio. The process begins with
applying a short-time Fourier transform (STFT) to the waveform
to extract the complex spectrogram, magnitude spectrogram, and
phase. The ResUNet model inputs the complex spectrogram and
outputs the magnitude mask and phase residual conditioned on the
text embedding. The separated complex spectrogram is obtained by
multiplying the STFT of the mixture with the predicted magnitude
mask and phase residual. Finally, the separated complex spectro-
gram is converted back into an audio waveform using the inverse
short-time Fourier transform (iSTFT).

2.2. Training Loss Terms

From the audio-text paired data, N target pairs (target audio dta and
target text dtt) and N noise pairs (noise audio dnt and noise text
dnt ) are randomly sampled. For audio, two audio waveforms are
combined to create a mixed audio waveform dma with a signal-to-
noise ratio (SNR) ranging from -15 to 15 dB. The target text is input
into the text encoder to extract the text embedding. The separator
then receives the mixed audio waveform and the text embedding,
separating the output audio waveform doa conditioned on the text
from the mixture.
L1 Loss In the source separation task, it is crucial to extract the
desired target sound source from a given mixture without altering
its original characteristics. In other words, the closer the separated
sound source is to the target sound source, the better the perfor-
mance. To achieve this, minimizing the L1 distance between the

target and separated audio over the time domain is commonly used
due to its simplicity and effectiveness in universal source separation
tasks. We also applied this approach. The equation is as follows:

Ltime =
∥∥dta − doa

∥∥
1

(1)

Spectrogram Loss To optimize performance in both the time
and frequency domains, we also employed a multi-scale mel-
spectrogram loss [9, 10, 8, 11] applied across multi time scales in
the mel-spectrogram. This loss is calculated based on the distance in
the mel-spectrogram, which is derived from the short-time Fourier
transform (STFT) and converted to a mel scale that better captures
human auditory characteristics. This approach enhances the per-
ceptual quality of the output. Additionally, using loss functions on
mel-spectrograms across multiple STFT scales enables the model
to effectively capture the time-frequency distribution, significantly
enhancing its overall performance.

Lfreq =
1

|α|+ |s|
∑
αi∈α

∑
i∈e

∥∥Si(d
ta)− Si(d

oa)
∥∥
1

+ αi

∥∥logSi(d
ta)− logSi(d

oa)
∥∥
2

(2)

where Si is a 64-bins mel-spectrogram using a normalized
STFT with window size of 2i and hop length of 2i−1, e = 6, ..., 12
is the set of scales, and α represents the set of scalar coefficients
balancing between the L1 and L2 terms, αi =

√
2i−1. Here, |α|

denotes the sum of the elements of the α set, and |s| is the number
of scales.
Audio-to-Text Contrastive Loss The output audio from text-
conditioned source separation should match both the target audio
and the target text. To achieve this, we implemented an audio-to-
text contrastive loss (A2T-CL) using the contrastive language-audio
pre-training (CLAP) model [12]. CLAP was trained to align audio
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and text by projecting them into a shared feature space. Firstly, we
designed the loss so that the output audio attracts its correspond-
ing target text as positive and repels other target texts within the
mini-batch as negative in the shared feature space of CLAP model.
Contrastive learning becomes more effective as the number of neg-
atives increases. To leverage this, we additionally use noisy texts
within the mini-batch as negative examples. This approach encour-
ages the output audio to be distinguishable from various other texts
while accurately fitting the target text. The equation is as follows:

La2t = −
1

N

N∑
i=1

log
exp(foa

i · f tt
i /τ)

N∑
k=1

{
exp(foa

i · f tt
k /τ) + exp(foa

i · fnt
k /τ)

}
(3)

where foa is a feature with output audio embedded using audio
encoder of CLAP model, and f tt and fnt are features with target
text and noise text embedded using text encoder of CLAP model.
And τ is a scalar temperature parameter.
Audio-to-Audio Contrastive Loss In addition, since there are both
target audios and noisy audios, the output audio can be matched to
target audios and noise audios. Therefore, it is possible to design an
audio-to-audio contrastive loss using these.

La2a = −
1

N

N∑
i=1

log
exp(foa

i · f ta
i /τ)

N∑
k=1

{
exp(foa

i · f ta
k /τ) + exp(foa

i · fna
k /τ)

}
(4)

where f ta and fna are features with target audio and noise au-
dio embedded using audio encoder of CLAP model.
Audio-to-Multi Contrastive Loss As aforementioned, contrastive
learning shows better performance as the number of negatives in-
creases. To take advantage of this, we integrated audio-to-text con-
trastive loss and audio-to-audio contrastive loss into a single ex-
panded loss: audio-to-multi contrastive loss, effectively doubling
the number of negatives. This causes the output audio to pull closer
to the corresponding target text and target audio while pushing away
from all remaining target texts, noise texts, target audios, and noise
audios within the mini-batch. As a result, the output audio maxi-
mizes its similarity to both the target text and target audio.

a2ti =

N∑
k=1

{
exp(foa

i · f tt
k /τ) + exp(foa

i · fnt
k /τ)

}
(5)

a2ai =
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k=1

{
exp(foa

i · f ta
k /τ) + exp(foa

i · fna
k /τ)

}
(6)
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+ log
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i /τ)
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}
(7)

Loss Balancer Encodec [8] introduced a loss balancer to stabilize
the training by adjusting the loss weights based on various scales of
gradients from the model. We used a loss balancer to stabilize the
model training with various losses. The gradient ∂li

∂doa
of the loss

based on the output doa is recalculated using the following equation,
incorporating the weights λi for the loss and reference norm R.

g̃i = R
λi∑
j λj

·
gi〈

∥gi∥2
〉
β

(8)

where
〈
∥gi∥2

〉
β

is the exponential moving average of gi. We
take R = 1 and β = 0.999. All the model losses fit into the
balancer. The model is then backpropagated to

∑
i g̃i instead of

the original
∑

i λigi.

2.3. Proposed Systems

We propose a total of three systems. The process by which data
is preprocessed and fed forward to the model in all systems is the
same as mentioned in Section 2.1. The primary difference between
each system lies in the configuration of losses during the training
process, particularly the type of contrastive loss. The configuration
of the losses for each system in our training was defined as follows.
All weights λ for the losses are set 1.

System1 = λ1Ltime + λ2Lfreq + λ3La2t (9)
System2 = λ1Ltime + λ2Lfreq + λ3La2t + λ4La2a (10)
System3 = λ1Ltime + λ2Lfreq + λ3La2m (11)

3. SETTING

3.1. Training Data

A total of four datasets were used for model training: AudioCaps
[13], WavCaps [14], Clotho v2 [15], and FSD50K [16]. For the
WavCaps dataset, only data belonging to AudioSet were used. The
combined dataset comprises a total of 216,398 audio clips, amount-
ing to approximately 580 hours. The following procedure was em-
ployed to generate mixed audio:

1. Random Selection: Target and noise audio clips were ran-
domly selected to ensure no overlap within the entire dataset.

2. Mono Conversion: If an audio clip had 2 channels, the av-
erage of the two channels was calculated to convert it into a
mono clip.

3. Resampling: Audio clips with a sampling rate different from
16 kHz were resampled to 16 kHz.

4. Length Adjustment: If an audio clip exceeded 10 seconds in
length, it was randomly truncated to 10 seconds. If it was
shorter than 10 seconds, zero padding was added to the end
to make it 10 seconds long.

5. Mixing: The pre-processed target audio clip and a noise au-
dio clip were mixed with signal-to-noise ratios (SNR) rang-
ing from -15 dB to 15 dB to produce a mixed audio clip.

3.2. Model

The text encoder for embedding the text is used pre-trained FLAN-
T5 model [4], and all parameters were frozen. AdamW optimizer
[17] with a learning rate of 0.0003 is used for training the separator
with the batch size of 25. τ was all set to 0.1 for the contrastive loss.

3.3. Test Data

To evaluate the performance of the model, validation (synth) dataset
provided in DCASE2024 Challenge Task9 [3] was used.
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3.4. Metric

We evaluate the performance of the source separation system using
the signal-to-distance ratio (SDR).

4. RESULTS

Baseline System1 System2 System3
SDR 5.708 7.030 7.124 7.139

Table 1: The comparison of SDR score.

While the baseline provided for the challenge achieved a signal-
to-distortion ratio (SDR) score of 5.708, our systems achieved SDR
scores of 7.030, 7.124, and 7.139, respectively. This represents a
remarkable performance improvement of over 30% compared to
the baseline. In language-queried audio source separation (LASS),
it is crucial to precisely match the output audio to the target au-
dio. Additionally, we demonstrate that aligning the output audio
more closely with both the target text and target audio in the feature
space using contrastive learning enhances performance. Contrastive
learning is more effective the more negatives are. We also show the
effectiveness of the audio-to-multi contrastive loss, which leverages
the characteristics of contrastive learning by integrating audio-to-
text and audio-to-audio contrastive losses. This approach leverages
the advantage of having more negatives, significantly improving the
model’s effectiveness.

5. REFERENCES

[1] X. Liu, H. Liu, Q. Kong, X. Mei, J. Zhao, Q. Huang,
M. D. Plumbley, and W. Wang, “Separate what you describe:
Language-queried audio source separation,” arXiv preprint
arXiv:2203.15147, 2022.

[2] X. Liu, Q. Kong, Y. Zhao, H. Liu, Y. Yuan, Y. Liu, R. Xia,
Y. Wang, M. D. Plumbley, and W. Wang, “Separate anything
you describe,” arXiv preprint arXiv:2308.05037, 2023.

[3] https://dcase.community/challenge2024/
task-language-queried-audio-source-separation.

[4] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fe-
dus, Y. Li, X. Wang, M. Dehghani, S. Brahma, et al., “Scaling
instruction-finetuned language models,” Journal of Machine
Learning Research, vol. 25, no. 70, pp. 1–53, 2024.

[5] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the lim-
its of transfer learning with a unified text-to-text transformer,”
Journal of machine learning research, vol. 21, no. 140, pp.
1–67, 2020.

[6] Q. Kong, Y. Cao, H. Liu, K. Choi, and Y. Wang, “Decoupling
magnitude and phase estimation with deep resunet for music
source separation,” arXiv preprint arXiv:2109.05418, 2021.

[7] Q. Kong, K. Chen, H. Liu, X. Du, T. Berg-Kirkpatrick,
S. Dubnov, and M. D. Plumbley, “Universal source separation
with weakly labelled data,” arXiv preprint arXiv:2305.07447,
2023.
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