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ABSTRACT

The technical report presents our submission system for Task 3 of
the DCASE 2024 Challenge: Audio and Audiovisual Sound Event
Localization and Detection (SELD) with Source Distance Estima-
tion (SDE). In addition to direction of arrival estimation (DOAE) of
the sound source, this challenge also requires predicting the source
distance. We attempted three methods to enable the system to pre-
dict both the DOA and the distance of the sound source. First,
we proposed two multi-task learning frameworks. One introduces
an extra branch to the original SELD model with multi-task learn-
ing framework, resulting in a three-branch output to simultaneously
predict the DOA and distance of the sound source. The other inte-
grates the sound source distance into the DOA prediction, estimat-
ing the absolute position of the sound source. Second, we trained
two models for DOAE and SDE respectively, and then used a joint
prediction method based on the outputs of the two models. For the
audiovisual SELD task with SDE, we used a ResNet-50 model pre-
trained on ImageNet as the visual feature extractor. Additionally,
we simulated audio-visual data and used a teacher-student learning
method to train our multi-modal system. We evaluated our methods
on the dev-test set of the Sony-TAu Realistic Spatial Soundscapes
2023 (STARSS23) dataset.

Index Terms— Sound event localization and detection, source
distance estimation, model ensemble, Conformer, audiovisual fu-
sion

1. TRACK A: AUDIO-ONLY INFERENCE

Sound event localization and detection (SELD) refers to the ability
of a machine to automatically recognize the temporal activity tra-
jectory of each sound category given a multi-channel audio input
and to track the spatial location of the target sound source when a
sound event is activate. In this technical report, we try to address
the task with an additional source distance estimation (SDE), i.e.,
sound event detection, localization with distance estimation (3D
SELD) [1]. We employ several effective audio data augmentation
techniques to generate training samples. Subsequently, the Resnet-
Conformer [2,3], a robust deep neural network (DNN) architecture,
was trained for 3D SELD. Previous works, such as [4] and [5], uti-
lize a multi-task learning framework with two parallel branches for

sound event detection (SED) and direction of arrival (DOA) estima-
tion. Building on this structure, we investigated three ways of in-
tegrating distance estimation with the SELD task. The first method
used a three-branch framework where, in addition to solving SED
and DOA estimation, a separate branch is adopted to predict the
source distance. The second method integrated the estimation of
source distance into the DOA estimation. The third method in-
volved training a separate SDE model to predict the source distance,
which was later combined with the DOA estimation model to obtain
the final 3D SELD result. Finally, model ensemble was employed
to achieve robust prediction of sound categories, directions and dis-
tance. This technical report will provide a detailed description of
the methodology’s three main components: data augmentation, net-
work training, and model ensemble.

1.1. Audio Data Augmentation

The official dataset, named Sony-TAu Realistic Spatial Sound-
scapes 2023 (STARSS23) [6, 7], contains only 7 hours and 22 min-
utes of real recordings. The dataset is split intro training data (90
clips) and testing data (78 clips). Therefore, data augmentation
techniques are essential to improve the diversity of training sam-
ples. In this challenge, we use three data augmentation methods.

The first method is audio channel swapping (ACS) spatial aug-
mentation, proposed in our previous work [5]. This method per-
forms transformation on audio channels, which is based on the
physical and rotational properties of the spherical microphone ar-
ray, to augment the DOA representation. The second method in-
volves simulating new multi-channel data using provided spatial
room impulse responses (SRIRs) and sound samples selected from
public dataset. Specifically, single-channel sound samples extracted
from the FSD50K dataset [8] are convolved with the SRIRs to in-
crease the amount of training data by using a recently released li-
brary [9]. With this method, we synthesized 40 hours of data. The
third method is Manifold Mixup performed on randomly selected
layers between input and hidden layers of the neural network [10].

1.2. Network Training

In this challenge, only FOA format data is used. A 1024-point dis-
crete Fourier transform is applied to extract log-spectral features
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Figure 1: The network architecture of our proposed audio 3D SELD models.

from the 40 msec Hanning window and 20 msec hop-length multi-
channel audio sampled at 24 kHz. The 4-channel log-mel spectral
features and 3-channel intensity vectors are then concatenated to
obtain 7-channel features. The segment length input to the network
is fixed at 10 seconds, which generates a feature shape of 7 × 500 ×
64. By applying the ACS strategy, the training data size can be in-
creased up to 8 times, resulting in approximately 350 hours of data.
We used Resnet-Conformer as the main network for 3D SELD.

In this technical report, we adopt four models with different
output formats to address the 3D SELD as shown in Figure 1.
The first is the SED-DOA model [5], where the network outputs
two-branch for sound event detection and direction of arrival es-
timation. The second model is the SED-SDE, where the network
outputs two-branch for sound event detection and source distance
estimation. Mean square percent error (MSPE) [1] is used as the
loss function for the SDE branch. The third model is SED-DOA-
SDE, where the network outputs three-branch for sound event de-
tection, direction of arrival and source distance estimation. The
fourth model integrates the source distance into the DOA infor-
mation, which uses two branches for SED and source coordinate
estimation (SCE). We multiplies the normalized Cartesian coordi-
nates of sound events with the source distance to obtain the absolute
Cartesian coordinates, which serves as the source coordinate labels.
This model aims to predict the absolute Cartesian coordinates of the
sound source, with the direction of coordinate vector representing
the DOA and the length of coordinate vector representing the source
distance. Mean square error (MSE) is used as the loss function for
the SCE branch.

Additionally, we found that initializing the parameters of
Resnet-Conformer with the parameters of the best model trained by
our team in DCASE 2023 Task 3 yielded good results. Therefore,
we applied this technique in the final submission system as well.

1.3. Model Ensemble

Model ensemble is utilized to improve the generalization ability
and achieve better results. First, we propose a fusion strategy by
combining the outputs of the SED-DOA and SED-SDE models.

The SED-DOA model can predict the DOA of sound events, while
the SED-SDE model can predict the source distance. By utilizing
the outputs of these two models, we can simultaneously obtain the
sound event categories, direction and distance estimation, which are
required for the 3D SELD task. Considering that the SED-DOA
model benefits from the ACS method and provides more robust
SED predictions, we select its SED prediction as the fusion SED
result in terms of posterior probability. And the DOA and SDE re-
sults are obtained from these two models, respectively.

Combining this system with the SED-DOA-SDE and SED-SCE
models improves generalization ability and achieves better results.
The final result is obtained from the model ensemble of this system
with the SED-DOA-SDE and SED-SCE systems.

2. TRACK B: AUDIO-VISUAL INFERENCE

2.1. Video Data Augmentation

The STARSS23 dataset contains about 3.8 hours of audio-video
training data [6], which is too small to train a robust audio-visual
3D SELD network. To obtain more video data, we took two data
augmentation methods. The first method utilizes the audio-video
simulation method proposed by Adrian S. Roman et al. [11]. Spa-
tialized sound events are generated using room impulse responses
(RIR) from the METU-SPARG RIR dataset [12]. And a spatial au-
dio synthesizer extracts audio from YouTube videos and convolves
it with RIR. This method provided us with approximately 6 hours
of audio and video data.

Additionally, in the audio-only 3D SELD system, we perform
ACS [5] to expand the audio data by a factor of seven. The
STARSS23 dataset includes simultaneous 360◦ video recordings
with a resolution of 1920 × 960, corresponding to an azimuth
angle range of [180◦,−180◦] and an elevation angle range of
[−90◦, 90◦]. We use an audio-visual pixel swapping (AVPS) ap-
proach to increase the audio and video data size [13]. Unlike our
previous work [2], we generate completely new video frames by
flipping and rotating the original frames. With these two methods,
we obtained approximately 80 hours of audio and video data.
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2.2. Audio-Visual Network Training

The audio-visual 3D SELD network takes both audio features and
visual features as input. Audio features are extracted in the same
manner as in audio-only 3D SELD networks. Visual features are
extracted using a pre-trained ResNet-50 network [14] at a frame
rate of 10 fps. Global average pooling is applied on the last layer of
ResNet-50, resulting in a 7 × 7 feature map. As the segment length
input to the network is fixed at 10 seconds, the visual feature shape
is 100 × 7 × 7.

To align the visual features with the audio features along the
temporal dimension, we repeat each visual feature map five times.
We consider one dimension of the visual feature map as the chan-
nel dimension and concatenate the remaining dimension with the
frequency dimension of the audio features. This results in fused
audio-visual features with a shape of 7 × 500 × 71. This concate-
nated feature set is then fed into the Resnet-Conformer network
for training. We trained the previously described SED-DOA, SED-
SDE and SED-SCE models using audio-visual data. The SED-SCE
model that we used in the challenge is shown in Figure 2. For sim-
plicity, we have omitted the linear layer between the ResNet and
Conformer, as well as the time pooling layer after the Conformer.
Additionally, instead of training from scratch, we employed the pa-
rameters of the best audio model trained by our team in DCASE
2023 Task 3 for initialization. This strategy also proved effective.
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Figure 2: The network architecture of our proposed audio-visual
SED-SCE model.

2.3. Model Ensemble and Post-processing

We trained two kinds of audio-visual 3D SELD systems as de-
scribed in the previous subsection. The submission system is ob-
tained by fusing these two single systems with the model trained on
the audio-only track using posterior probability fusion. Addition-
ally, we used a post-processing scheme, called video-guided deci-
sion fusion [15], to generate more accurate DOA results.

3. RESULTS ON DEVELOPMENT DATASET

3.1. Results on Track A

We evaluated our proposed method using the STARSS23 develop-
ment dataset. For Track A, we generated a larger training set using
the data augmentation methods described above. Table 1 shows

the experimental results of the proposed 3D SELD methods on the
development dataset of audio-track. In the table, “SED-DOA” de-
notes the modeling method based on SED-DOA output format and
“SED-SDE” denotes the modeling method based on SED-SDE out-
put format. “SED-DOA+SED-SDE” denotes the fusion system of
these two models. “SED-DOA-SDE” denotes the modeling method
based on SED-DOA-SDE output format and “SED-SCE” denotes
the modeling method based on SED-SCE output format. “Model
Ensemble” represents employing model ensemble for joint predic-
tion of these four models. Our proposed 3D SELD systems outper-
form the Baseline by a large margin.

Table 1: Experimental results of the audio-only 3D SELD systems
on the development dataset using FOA format data.

System F20◦ ↑ DOAE↓ RDE↓
Baseline-A 0.13 36.90◦ 0.33
SED-DOA 0.59 12.90◦ -
SED-SDE 0.57 - 0.22

SED-DOA+SED-SDE 0.59 12.93◦ 0.23
SED-DOA-SDE 0.52 13.85◦ 0.24

SED-SCE 0.52 12.85◦ 0.24
Model Ensemble 0.59 12.42◦ 0.21

3.2. Results on Track B

For Track B, we utilized approximately 80 hours of audio-visual
training data. We fine-tune the audio-visual 3D SELD models based
on the audio pre-trained parameters. Table 2 presents the experi-
mental results of the proposed AV 3D SELD methods on the de-
velopment dataset. Systems in Table 2 share the same network ar-
chitectures as those in 1 expect they are trained using audio-visual
data. Similar observations can be made for the audio track and the
audio-visual track. Using two separate models, namely SED-DOA
and SED-SDE, to perform joint prediction, yields slightly better re-
sults compared to using a single model to solve the 3D SELD task.
In the table, “AV SED-DOA+SED-SDE” refer to the AV fusion sys-
tem of the DOA and distance estimation models. “AV Model En-
semble” represents the fusion among several AV 3D SELD systems
with a single audio system, denoted as “SED-DOA+SED-SDE” in
Table 1. “+PP” indicates the use of a video-guided decision fu-
sion. Our proposed audio-visual system demonstrates significant
improvement over the baseline system. Through model ensemble
and post-processing methods, all three metrics are improved.

Table 2: Experimental results of the audio-visual 3D SELD systems
on the evelopment dataset using FOA format data.

System F20◦ ↑ DOAE↓ RDE↓
Baseline-AV 0.11 38.40◦ 0.36

AV SED-DOA 0.58 13.10◦ -
AV SED-SDE 0.63 - 0.24

AV SED-DOA+SED-SDE 0.56 12.77◦ 0.24
AV SED-SCE 0.55 13.16◦ 0.25

AV Model Ensemble 0.59 12.39◦ 0.22
AV Model Ensemble +PP 0.61 10.94◦ 0.22
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