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ABSTRACT

In this report, we present our developed anomalous sound detec-
tion (ASD) systems for DCASE 2024 Challenge Task 2. We pro-
pose three methods to improve ASD systems based on a discrimina-
tive approach. First, we enhance a discriminative feature extractor
by using multi-resolution spectrograms as input and implementing
new training strategy and data augmentation for its training. Sec-
ond, we generate pseudo-attribute labels to effectively train the dis-
criminative feature extractor even for some machines without any
attribute labels, where the pseudo-attribute labels are obtained by
self-supervised learning using artificially processed data as negative
samples. Third, we utilize Audioset as an external training dataset
to further improve ASD performance, where we carefully extract
useful samples from it using a pre-trained feature extractor. Our de-
veloped ensemble system has achieved 67.26% in the official scores
calculated as a harmonic mean of the area under the curve (AUC)
and partial AUC (p = 0.1) over all machine types and domains in
the development set.

Index Terms— anomalous sound detection, discriminative
method, pseudo labels, core-set selection

1. INTRODUCTION

This report describes our submitted systems for the DCASE 2024
Challenge Task 2 [1]. This task focuses on anomalous sound detec-
tion (ASD) which aims to detect mechanical failures from sounds
emitted by a machine. This year, the organizers set the following
five conditions, inheriting four conditions from previous years: (1)
training data includes only normal sounds, (2) domain shifts occur,
(3) tuning for each machine type is not possible, and (4) a limited
number of machines are available for a machine type, and addi-
tionally introducing a new condition (5) no attribute information is
available for some machine types. Although the attribute informa-
tion is useful to improve performance [2]-[7], we need to develop
new techniques without using it.

ASD methods are classified into generative and discriminative
approaches [8], where the discriminative approach often achieves
better performance [9], [10]. The discriminative approach trains
the feature extractor to classify differences in normal sounds (i.e.,
machine types and attribute information). During inference, the dis-
tance between the observation and normal sound calculated in the
discriminative feature space is used as the anomaly score, assuming
anomalous sounds are not correctly classified.

Our system is based on the state-of-the-art discriminative
method [9], [11], [12] and we propose various techniques to im-
prove its performance in the 2024 Challenge setting. First, we
enhance the discriminative feature extractor by utilizing multi-
resolution spectrograms together with new training techniques.

Second, we generate and utilize pseudo-attribute labels for train-
ing to deal with the fifth requirement introduced this year. Third,
to address the fourth requirement, we utilize Audioset [13] as an
external data resource, proposing a core-set selection method for
finding useful samples. We conduct an experimental evaluation
of our systems using the test data of the DCASE 2024 Challenge
Task 2 development dataset [14], [15]. The results show that all
of the proposed techniques are effective and our submitted systems
significantly outperform the official baseline system and the previ-
ous state-of-the-art system. Specifically, the official baseline sys-
tem [16], the previous state-of-the-art system [9], and our system
has achieved 55.45%, 63.62%, and 67.26% in official scores, re-
spectively.

2. STATE-OF-THE-ART METHOD IN THE 2023
CHALLENGE SETTING

We describe the state-of-the-art discriminative method in the 2023
Challenge setting we have been able to confirm performance [9],
[11], [12].

2.1. Structure of feature extractor

The feature extractor receives an amplitude spectrum and an am-
plitude spectrogram of an input audio signal [12]. Since static in-
formation is captured by the spectrum, temporal mean normaliza-
tion (TMN), which subtracts the temporal mean, is applied to the
spectrogram to capture dynamic information. The each network ex-
tracts D-dimensional feature from each input and obtains z{** as a

final output for the i-th audio signal z; € RT as follows:
2 = [z, 2] e R?P )

where T is the length of the time-domain audio signal and
zgm) = gm(fm(x:i)). f1(:) and f2(-) apply discrete Fourier trans-
form (DFT) and short-time Fourier transform (STFT) to the audios
signal, respectively. g1(-) and g2(-) are neural networks carefully
designed to prevent trivial projection (i.e., no bounded activation
function and no bias term) [12], [17]. The effectiveness of these
techniques has been shown in [12].

2.2. Training method of feature extractor
2.2.1. Sub-cluster AdaCos

As a classification loss function, angular margin loss, which min-
imizes the cosine distance between the extracted feature and the
corresponding class center, is widely used in ASD task [3], [4], [9].
The sub-cluster AdaCos (SCAC) [11] is its improved version and
achieves high ASD performance by using multiple class centers for
a single class label. SCAC uses fixed class centers to prevent trivial
projection [12].
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Figure 1: Structure and training method for our feature extractor
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2.2.2. Mixup

In the ASD task, data augmentation technique, mixup [18] is widely
used and its effectiveness has been shown [3], [9], [10], [12]. Mixup
linearly interpolates audio signals and class labels between ran-
domly selected two training samples, respectively, as follows:

x; = x; + (1 — Ny, (2)
U=+ (1— N, 3)

where I; € {0,1}“ is a onehot label for x;, C is the number of
label classes, and A € [0,1] is a mixing coefficient. For general
classification tasks, data augmentation techniques such as mixup
improve performance by preventing overfitting to specific training
data. In the ASD task, =} can also be interpreted as being used as
a pseudo-anomalous sound since I} increases the distance from the
class center of normal data.

2.2.3. FeatEx

Recently, a new training method FeatEx [9] has been proposed that
significantly improves the ASD performance. FeatEx trains a fea-
ture extractor with the following loss function.

‘Ccat(zicatal;)+['0x(ziexa (2_3 )7 (4)

where Lcat(+,-) is an originally used discriminative loss func-
tion with the fixed class centers and FeatEx additionally uses
Lex (25*,15) with trainable class centers. z§* and I$™ are calcu-
lated using randomly selected i-th and j-th samples as follows:

2> =2V, 2] e R?P, (5)

15 =10,0.5-1;,0.5-15] € [0,1]*, (6)

where 0 is a C-dimensional zero vector. With the additional loss
Lex (255, 15), the feature extractor needs to identify whether the
information from the different audio signal is mixed or not, resulting
more information being captured [9].

2.3. Backend

The backend responsible for calculating the anomaly score is con-
structed using features 2°** extracted from the training data. As a
preliminary step, k-means clustering is applied to the features of the
source domain. The anomaly score is then determined by the small-
est distance between the cluster centers of the source domain and
all features of the target domain.

3. PROPOSED METHOD

We use the system described in Sec. 2 as our baseline system and
propose various techniques to improve it.

Challenge

3.1. Feature extractor

To improve the performance regardless of the requirement of the
2024 Challenge (i.e., lack of the attribute labels), we employ three
techniques for the feature extractor as shown in Fig. 1.

3.1.1. Multi-resolution spectrograms

We extend the conventional method by adding an amplitude spec-
trogram of the different resolution f3(a;) to the input features. We
expect that it gives multiple perspectives to capture anomalies.

3.1.2. Subspace loss

‘We propose a subspace loss that achieves the same performance im-
provement effect as FeatEx in a simpler way. First, Lex (-, -) in the
FeatEx can be interpreted as it encourages each network g, () to
identify the class labels from only the corresponding input features
zfm) = gm(fm(;)) without combined feature z5**. We then use
the following loss function, replacing Lex (-, -) with the additional

subspace loss functions £, (-, -).

M

Lear (2™ 1) + > Lon(2™,17), ©)

m=1

where M = 3 is the number of input features and L. (-,-) has
the trainable centers. The subspace loss is more parameter-efficient
than FeatEx with respect to the number of input features M. For the
trainable class center, FeatEx requires DC'SM (M + 1) parameters
whereas subspace loss requires only DC'SM parameters where S
is the number of sub-clusters in SCAC. In this respect, the subspace
loss is well-suited for using multi-resolution spectrograms. A de-
tailed analysis of the subspace loss is our future work.

3.1.3. Cutmix

We newly adopt cutmix [19] as a data augmentation technique. Cut-
mix is used in the image classification tasks and it replaces the lin-
ear interpolation in mixup with the exchange of image patches. We
apply cutmix to the time-domain signal as follows:

z,=m® oz +(1-mP)ox;, (8)
U=\, +(1— My, )

where m™) € {0,1}7 is a binary mask and m™ set a consecu-
tive AT-sample segment to 1. While mixup can be interpreted as
a process that generates pseudo anomalies in the entire signal, cut-
mix generates pseudo anomalies only in a certain segment. Because
they are expected to have different effects, we use both of them.

3.2. Pseudo-attribute labels

To improve the performance in the 2024 Challenge setting, we
introduce pseudo-attribute labels for the machine without ground
truth attribute labels. The proposed method consists of three stages:
(1) constructing a feature space that reflects the differences in the
machine sounds, (2) generating pseudo-attribute labels by cluster-
ing in the feature space, and (3) training the feature extractor for
ASD using the obtained pseudo-attribute labels.

3.2.1. Construction of feature space

First, we construct the feature space that reflects the difference in
the machine sounds. In the preliminary experiments, we found that
large-scale pre-trained models are not useful for constructing such
feature space because they tend to reflect the difference in the noise
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Algorithm 1: Proposed bottom-up ensemble clustering

Algorithm 2: Proposed core-set selection

Input: Set of amplitude spectrograms of the target
machine {X,..., X}, two pre-trained feature
extractor gétzr and gﬁzr with different seed, the
maximum number of clusters k, and threshold 6.

Output: Result of clustering and corresponding labels

Function kmeans (Z, k) :

Obtain k clusters C = {C; |i = 1,..., k} by applying

k-means clustering to features Z.

return C

Function merge (C, L) :

Find the pair of clusters (C;, , Cs, ) in C with the

smallest distance between centroids.

Remove clusters C;, and C;, from C.

Add Chew = Ci1 U Cig toC.

Remove labels L;, and L;, from L.

Add Lyew = Lil U Li2 to L.

return C, L, Cnew, Lnew

Function assign (C'8*, L8t ¢t L ).

fori =1,k do

if L is () and |C%° N CEe,|/|CY%Y| > 6 then
| e L,
end

end

return C's*, [ '8

¢t = kmeans ({g\}.(X)|i=1,...,n},k)

Initialize cluster labels: Li*f < {4} fori = 1to k

C'®" = kmeans ({gi(X;) [i = 1,...,n}, k)

Initialize cluster labels: L{®* «— () fori = 1 to k

fori=1,kdo

| C'" L'« assign (C*®', L', C, L)
end

fori =1,k —1do

Cret, L8 Ciy. L + mexge(CT, L)
Ct8* '8t « assign (C*®*, L8, cret | Lref
end

return C'%* and L'8*

rather than the difference in the operating sound. This problem mo-
tivates us to construct the noise-robust feature space from scratch.
The proposed method trains a feature extractor gats. () for each ma-
chine type with the following Lyriplet.

ACtriplet = max(dpull - dpush + dmarginy 0)7 (10)
dpull = | ‘gattr(Xanchor) - gattr(Xpositive) | ‘27 (1 1)
dpush = | ‘gattr(Xanchor) - gattr(Xnegative) | ‘27 (12)

where dmargin is hyperparameter for a margin. Xanchor, Xpositives
and X cgative are obtained as follows:

Xanchor ~ { X, Noise(X;)} with equal probability, (13)

Xpositive = NOise(Xi)y (14)
Xnegative ~ {Resize(X;), Noise(Resize(X;)), X,
Noise(X;)} with equal probability, (15)

where X; = fattr(:) and X are amplitude spectrograms of dif-
ferent signals from the same target machine type, Noise(-) adds the
sound of non-target machine type, and Resize(+) resizes the spec-
trogram in both the time and frequency axes. Minimizing dpun
helps to reduce the effect of noise and maximizing dpusn reflects

Input: Original data D°'#, external data D°**, pre-trained
ASD system h(-), percentages for the percentiles g,
and maximum number of samples Nmax

Output: core-set D for D**

Calculate anomaly score a°"® of samples in D°'® with h(-)

Obtain the ¢-th percentile value a** of a°*®

'DCOI'e (; 0

x < arg min h(x)

xeDext
while | D°™| < npax and h(z) < a'® do
DCO[‘Q <_ DCOTG U {:B}
Dext — Dext \ {1}}
x + arg min h(x)
zeDext
end

the difference in the machine sound regardless of noise. The feature
extractor gattr (+) is used solely for obtaining pseudo-attribute labels
and is different from gy, (-).

3.2.2. Obtaining pseudo-attribute labels by clustering

After training gastr(+) for each machine type, we extract features
from the training data and obtain pseudo-attribute labels through
clustering. However, it is generally difficult to obtain proper labels
without correctly setting the number of clusters. To solve this prob-
lem, we propose a bottom-up ensemble clustering as summarized in
Algorithm 1. The algorithm assigns a label of C™*f to C*8® when the
appropriate granularity is reached, performing bottom-up clustering
on C™f. The appropriate granularity is determined using two fea-
ture spaces in an ensemble manner (i.e., [C{%° N C}'|/|Ci%*| > 0).
The algorithm outputs C*&* and L*" and provides a set of labels for
each audio signal because the labels are merged through bottom-up
clustering.

3.2.3. Training with pseudo-attribute labels

We train a feature extractor for ASD with L*8*. Since L'8" contains
multiple labels for each training sample, we replace the original loss
function Lorg(+, -) with the following loss function L (-, -)-

Lonuti(zi, L) = min  Lorg(2i, onehot(l; ;)), (16)
l; jELYE

where L{®" is a i-th set of labels and onehot(-) transforms label
index to onehot label.

3.3. Core-set selection from the external dataset for ASD

The variety of the training data for each machine type has been re-
stricted since the 2023 Challenge. While leveraging external data
resources could potentially alleviate this limitation, it is crucial to
carefully select useful samples to avoid a data imbalance between
original and external datasets. Therefore, we propose a core-set
selection method for ASD as summarized in Algorithm 2. The al-
gorithm selects audio signals with low anomaly scores that can be
interpreted as misclassified samples between D°'¢ and D**. We
use Audioset [13] as D" and generate its label by concatenating
a class label of Audioset (i.e., mid) and a machine type predicted
by discriminative feature extractor of h. In the experiment, only the
following classes of Audioset were manually selected as D***: Ve-
hicle, Motorboat, Ship, Power windows, Skidding, Air brake, Pro-
peller, Helicopter, Engine, Dental drill, Chainsaw, Medium engine,
Heavy engine, Accelerating, Sliding door, Microwave oven, Hair
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Table 1: Evaluation results. The values represent the harmonic mean of AUC and pAUC over all domains. “official” represents the official
score obtained by harmonic mean over all machine types. * indicates a machine type with no ground truth attribute label. MR, SL, PA, and
AS indicate the use of Multi-Resolution spectrograms, Subspace Loss, Pseudo-Attribute labels, and Audioset, respectively. Options in the

parentheses are used for the ensemble of anomaly scores.

ID System ‘ bearing  fan gearbox*  slider* ToyCar ToyTrain*  valve ‘ official
Official baseline (MSE) 60.26 59.70  64.38 57.47 46.11 54.33 49.77 | 55.35
Official baseline (Mahalanobis) 54.78 54.81 68.79 62.06 48.20 48.48 53.46 | 55.02
FeatEx+Mixup 62.51 59.02 62.74 83.77 54.85 59.76 70.17 | 63.62
MR+SL+Mixup 71.83 57.29 60.45 81.00 54.43 61.52 72.64 | 64.42
MR+SL+Cutmix 69.21 57.94 63.48 77.49 53.23 61.96 72.83 | 64.21
MR+SL+(Mixup, Cutmix) 71.66 57.69 62.47 80.02 54.21 61.69 72.93 | 64.72

®  MR+SL+Mixup, Cutmix)+PA 69.71 57.90 66.53 90.08 52.19 69.40 75.23 | 6691

®  MR+SL+(Mixup, Cutmix)+AS 70.16 60.78 64.26 79.97 53.52 61.40 73.09 | 65.16

®  MR+SL+Mixup, Cutmix)+PA+AS | 70.12 60.77 64.31 91.11 51.98 69.35 75.88 | 67.26

O @0,® 70.17 60.07 65.20 88.50 52.47 69.22 74.90 | 67.05

dryer, Electric toothbrush, Vacuum cleaner, Electric shaver, Gears,
Pulleys, Mechanical fan, Air conditioning, Printer, Sawing, Filling,
and Sanding.

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental setups

We conducted an experimental evaluation using the DCASE 2024
Task 2 Challenge development dataset (ToyADMOS?2 [14], MIMII
DG [15]) and additional training dataset. The development dataset
included training and test data of seven machine types: bearing, fan,
gearbox, valve, slider, ToyCar, and ToyTrain. Also, the additional
training datasets included training data of the other nine machine
types. The training data included 1,000 samples of normal data for
each machine type, of which 990 samples are in the source domain
and 10 samples are in the target domain. The test data of the devel-
opment dataset included 50 samples per machine type, domain, and
normal/anomalous category. Each recording was a 6 to 12-second
single channel signal sampled at 16 kHz.

For the STFT parameters, the DFT size of f2(-), f3(-), and
fater(+) were 4096, 128, and 1024, respectively. The window func-
tion was the hann window, with the same size as the DFT size. The
frame shift was half of the DFT size, and frequency bins in the
range of 200 Hz to 8000 Hz were used. Also, we applied TMN to
the fastr(-). The signal-to-noise ratio of Noise(-) was randomly se-
lected from [—5, 5). The scale of Resize(-) was randomly selected
from [0.5, 0.8) or [1.2, 1.5). For the hyperparameters of bottom-up
ensemble clustering described in Sec. 3.2.2, we set k to 16 and 6 to
0.95, respectively. For the hyperparameters of core-set selection de-
scribed in Sec. 3.3, we set ¢ to 100 (i.e., maximum anomaly score)
and nmax to 100, respectively. We trained the feature extractors
91(+), g2(+), and gs(-) for 18 epochs, and gatt.(-) for 6 epochs, with
AdamW [20] of a fixed learning rate of 0.001, respectively. Each
feature extractor consisted of the ResNet architecture similar to that
in [9]. The mixup was applied with 50% probability and the cutmix
was applied with 75% probability. The number of sub-clusters .S in
SCAC was set to 16. Additionally, we fixed the scale parameter of
SCAC since not applying mixup with 100% probability could cause
overflow. The batch size was 64 for g1 (), g2(+), and g3(-), and 32
for gater(-). During inference, we used the conventional backend
described in Sec. 2.3. We averaged the anomaly scores for each au-
dio signal using scores obtained from the checkpoints of 14, 16, and

18 epochs, and five different seeds (a total of 15 scores).

As the metrics, we used the area under the receiver operating
characteristic (ROC) curve (AUC) and partial AUC (pAUC) with
p = 0.1. As in the official evaluation, we calculated the AUC
of each domain using the normal sounds in that domain and the
anomalous sounds from both domains, and we calculated pAUC
using sounds in both domains.

4.2. Experimental results

Table 1 shows the performance of the official baseline, FeatEx (our
baseline), and our systems. For the pre-trained system h in the
core-set selection, we used the MR+SL+Mixup+PA with an ensem-
ble of anomaly scores across five different seeds at the 18th epoch.
First, we can see that FeatEx outperforms the official baseline sys-
tem, and the proposed combination of multi-resolution spectro-
grams and subspace loss outperforms FeatEx. Additionally, the en-
semble of a system using mixup and a system using cutmix achieves
slightly better performance than each system individually. The use
of pseudo-attribute labels significantly improves the performance
of the machine type with no ground truth attribute labels. Training
with Audioset further enhances performance, achieving 67.26% in
the official scores.

5. CONCLUSION

In this report, we presented our systems for DCASE 2024 Challenge
Task 2. Our systems are based on the state-of-the-art discrimina-
tive ASD method, and we further improved performance with three
techniques. First, we enhanced the feature extractor using multi-
resolution spectrograms, subspace loss, and cutmix. Second, we
introduced pseudo-attribute labels and proposed bottom-up ensem-
ble clustering to obtain proper labels. Third, we utilized Audioset as
an external data resource for the training and proposed a core-set se-
lection method for finding useful samples. The experimental evalu-
ation using the development dataset demonstrated the effectiveness
of the proposed techniques and our system achieved 67.26% in the
official score.
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