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ABSTRACT

This report describes our submission on the task of low-complexity
acoustic scene classification of the DCASE 2024 challenge. To
meet the system complexity limitations of the task, we trained a sin-
gle MobileNet variant fitting for all five pre-defined data folds. The
training was optimised towards a focal loss function that helped on
hard misclassified samples. The models were deployed with FP16
precision for the sake of efficient inference.

Index Terms— MobileNet, Focal Loss

1. INTRODUCTION

The DCASE Challenge for the research problem of acoustic scene
classification focuses on categorising short audio clips into ten spe-
cific scene types including both indoor and outdoor scenarios. The
2024 version [1] introduces hard constraints, limiting the maximum
memory allowed for model parameters to 128 kB and capping the
number of multiply-accumulate operations (MACs) at 30 million
for inferring a one-second audio clip as provided. Also, the devel-
opment data set is updated to contain five explicitly defined folds
that aims to encourage solutions handling limited amount of labeled
data.

2. METHODS

2.1. Focal Loss Function

Based on our previous attendances of the challenge [2, 3], the uses
of focal loss [4] have demonstrated calibration effects for poorly
classified samples so as to improve the overall classification re-
sults. The focal loss function is defined as

FL(pt) = −αt · (1− pt)
γ · log(pt)

where pt is the predicted probability for the class, αt is a balanc-
ing factor designed to address the issue of class imbalance during
training. γ is a focusing parameter leading to the modulating fac-
tor (1− pt)

γ that can be tuned against the predicted probability pt.
It turns small and decreases the loss if the classier is too confident
on some classes, and vice visa. Such modifications adding to the
standard cross-entropy loss help focus more on predicting challeng-
ing samples.

Given that the DCASE dataset is well-curated to ensure class
balance, the balancing factor αt was not configured for the exper-
iments. The focusing parameter γ was set to 2 for optimal perfor-
mance as determined by the results of the conducted experiments.

2.2. Training Set-up

Our submitted system was training a MobileNet variant [5] and
adapted from the official baseline implementation [6]. The system
required 119.5 kB of memory after quantization to 16-bit precision
and 29.43 MMACs for inference.

Similar strategy of extracting acoustic features was also deployed
except that a slightly shorter hopping window of 472 was applied
while generating spectrograms. This leaded to a resulting input fea-
tures with 256 frequency bins and 68 time samples.

For training the models on smaller data folds such as 5% subset,
10% subset and 25% subset, a batch of 78 and a learning rate of
0.005 were chose. For the 50% and 100% subsets, the batch size
was set to 130 and a learning rate of 0.01 was applied.

3. RESULTS

Table 1 compares our results with the official baseline.
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Table 1: Class-wise results using each of five subsets of the development dataset. B denotes the official baseline results on the particular
training data split whereas S denotes the results of our system. Avg Accuracy specifies the class-wise macro-averaged accuracy of individual
development subset.

Categories 5%B 5%S 10%B 10%S 25%B 25%S 50%B 50%S 100%B 100%S
Airport 34.77% 34.76% 38.50% 35.13% 41.81% 38.54% 41.51% 46.65% 46.45% 47.56%

Bus 45.21% 47.77% 47.99% 56.26% 61.19% 61.81% 63.23% 71.98% 72.95% 78.68%
Metro 30.79% 35.48% 36.93% 41.48% 38.88% 42.77% 43.37% 49.15% 52.86% 52.25%

Metro Station 40.03% 45.79% 43.71% 39.79% 40.84% 43.67% 48.71% 52.28% 41.56% 51.81%
Park 62.06% 70.77% 65.43% 65.91% 69.74% 72.25% 72.55% 73.29% 76.11% 80.26%

Public Square 22.28% 26.36% 27.05% 29.76% 33.54% 39.69% 34.25% 42.45% 37.07% 40.84%
Shopping Mall 52.07% 49.22% 52.46% 47.74% 58.84% 62.42% 60.09% 55.85% 66.91% 57.30%

Street Pedestrian 31.32% 28.45% 31.82% 42.65% 30.31% 42.55% 37.26% 36.06% 38.73% 45.92%
Street Traffic 70.23% 63.36% 72.64% 72.55% 75.93% 75.42% 79.71% 82.22% 80.66% 77.97%

Tram 35.20% 40.84% 36.41% 47.56% 51.77% 52.12% 51.16% 52.63% 56.58% 63.20%
Avg Accuracy 42.40% 44.28% 45.23% 47.89% 50.29% 53.12% 53.19% 56.26% 56.99% 59.58%

±0.42 ±1.01 ±0.87 ±0.68 ±1.11


