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ABSTRACT 

The second task of the Detection and Classification of Acous-

tic Scenes and Events (DCASE) 2024 challenge addresses the dif-

ficulties of domain adaptation and generalization in Anomalous 

Sound Detection (ASD). We present two types of Variational Au-

toencoders (VAEs) to overcome these challenges. Linear predic-

tion coefficients provide a sparse and meaningful representation of 

the original raw audio clips for our models. This report also intro-

duces two optimization strategies for setting reasonable hyperpa-

rameters for anomalous sound detectors. 

Index Terms— domain shift, anomaly sound detection, 

(vector quantized) variational autoencoders, linear predic-

tion coefficients, convolution 

1. INTRODUCTION 

Anomaly Sound Detection (ASD) is a promising area of pre-

dictive maintenance because low-cost, non-intrusive sensing ena-

bles health monitoring for a wide range of applications. The De-

tection and Classification of Acoustic Scenes and Events (DCASE) 

2024 challenge encourages the development of anomalous sound 

detectors easily adaptable from one application to another. The 

second task of the challenge [1], entitled "First-Shot Unsupervised 

Anomalous Sound Detection for Machine Condition Monitoring", 

introduces 16 different machine types that necessitate a well gen-

eralizable solution. The ToyADMOS2 [2] and MIMII DG [3] da-

tasets provide the seven machine types in the development dataset. 

Outperforming the provided baseline model [4] is also part of the 

challenge in Task 2. 

2. PROPOSED METHODS 

2.1. Dataset 

We consider only the development and evaluation dataset for 

the second task of the DCASE 2024 challenge [2, 3]. To speed up 

the training of our models, we consistently evaluate 160,000 sam-

ples from each clip. Consequently, we either crop this number of 

samples from the center or apply symmetric zero-padding, de-

pending on the original number of samples. 

2.2. Data Preprocessing 

In each epoch of our training, we pass all training clips from 

the development dataset at least once. However, the target domain 

makes up just one percent of the original data pool. To balance this, 

we randomly sample clips from the target domain that are repeated 

several times in training. This ensures that one third of the training 

samples originate from the target domain. Following this compro-

mise, we compensate for the imbalance, but also avoid overfitting 

on the ten clips from the target domain. 

To facilitate the anomaly detection, we provide our network 

with meaningful Linear Prediction Coefficients (LPC). They are 

computed according to the algorithm proposed by Larry Marple [5] 

and describe the envelope of the spectrum calculated for a speci-

fied window from the audio clip. 

 Each clip is decomposed into windows of 2,000 audio sam-

ples described by 100 LPCs in the operation mode with fixed hy-

perparameters. In another operation mode, the number of coeffi-

cients and window size are tuned.  

2.3. Models 

We propose Variational Autoencoders (VAEs) [6] as anomaly 

detectors. In contrast to vanilla classification networks, VAEs are 

trained exclusively with normal samples of a healthy machine. 

Therefore, they are predestined for our task. 

VAEs encode normal inputs into a compact representation. 

This latent embedding is seven-dimensional in our case. From this 

representation, the original inputs are reconstructed as best as pos-

sible by a decoder. Without anomalies, the evaluated samples are 

similar to the normal training samples. Therefore, the reconstruc-

tion loss is expected to be in the same range as that observed in the 

training data. Otherwise, an increase in the reconstruction loss in-

dicates the presence of anomalies. 

We apply two types of VAEs. The standard VAE is encour-

aged to map all normal inputs to a standard multivariate Gaussian 

distribution. Deviations from the typical acoustic fingerprint of a 

healthy machine, on which the encoder is trained, lead directly to 

deviations from the learned distribution. 

The second proposed model is a Vector Quantified Variational 

Autoencoder (VQ-VAE) [7]. It stores multiple vectors with size of 

the latent dimension. For each encoding, it selects the vector clos-

est to the embedding and uses that vector for decoding. While nor-

mal VAEs tend to suppress details to map all inputs into one 
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distribution, the VQ-VAE clusters information into multiple cen-

ters. As a result, different details of an input are preserved in dif-

ferent modes or at a particular step in a sequence. The number of 

vectors in the codebook is set to 40 in the fixed hyperparameter 

mode, and a tunable number of clustering centers otherwise. 

Our decoder is a mirrored architecture of our encoder. The first 

layer of the encoder consists of a skip connection and two inde-

pendent convolutions of the current window and its neighbors with 

kernel sizes of 7 and 13, respectively. The filters use a dilation of 

three and seven. The information obtained serves as input to mul-

tiple fully connected layers, all sharing the same number of paral-

lel neurons. In the case of fixed hyperparameters, the network con-

sists of three hidden layers with 160 neurons in each layer. With 

tuned hyperparameters, the number can vary from one to five lay-

ers with up to 256 neurons each. The dimension of the embedding 

is seven. PReLUs act as activation functions. 

2.4. Loss Functions 

Our loss function for the standard VAE is a linear combination 

of the reconstruction error measured by the Mean Squared Error 

(MSE) and Kullback-Leibler (KL) divergence [8] evaluating the 

deviation from the target distribution: 

𝐿 = 𝛼 ⋅ 𝐿MSE + 𝛽 ⋅ 𝐿KL, (1)  

Where LMSE represents the mean of the squared differences of the 

original inputs �̂�𝑖 and their corresponding reconstructions 𝑌𝑖: 

𝐿MSE =
1

𝑛
∙ ∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1 . (2)  

The VQ-VAE also applies this loss to measure the differences 

between the vectors from its codebook and the embeddings of its 

encoder. For this architecture, the MSE between the nearest code-

book vector and the embedding replaces LKL in (1). For the VAE, 

the KL divergence (3) describes the deviation of the distribution 

of the embeddings 𝑃(𝑥) from the targeted multivariate gaussian 

normal standard distribution 𝑆(𝑥): 

𝐿KL = ∫ 𝑃(𝑥) ⋅ 𝑙𝑜𝑔 (
𝑃(𝑥)

𝑆(𝑥)
)𝑑𝑥

+∞

−∞
. (3)  

We refer to this as hidden loss. It should be noted that applying 

the Wasserstein distance [9] instead of the KL divergence had no 

significant impact on the results. We train all types of machines 

separately and use ADAM as optimizer with a learning rate of 

0.001. 

2.5. Anomaly Score and Detection 

The k-highest hidden and reconstruction losses are selected 

from all windows derived from an audio clip. The mean is calcu-

lated over both subsets separately. In this way, our system can de-

tect peaks that represent anomalies (k=1) or continuous deviations 

of an anormal signal when k equals the number of windows from 

the audio clip. In the case of fixed hyperparameters, we set k to 45. 

Otherwise, we optimize it for its target machine. The final anomaly 

score is a linear combination of both means.  
Based on the score calculated on the normal samples from 

training, we heuristically determine that at least 95% of them shall 

be detected as normal. According to this rule, we choose the 

threshold for finally labelling the detections. 

3. HYPERPARAMETER OPTIMIZATION AND 

RESULTS 

The results displayed in Table 1 to Table 6 demonstrate the 

significant impact of the hyperparameter settings of our input rep-

resentations and models on the resulting AUROCs. We use Op-

tuna [10] for hyperparameter tuning. 

Table 1 displays the optimal results for the VAE architecture, 

while Table 4 shows the optimal results for the VQ-VAE archi-

tecture. It is possible to reach these results by tuning the hyperpa-

rameters for each machine individually directly on the AUROC, 

which is calculable for the development dataset. However, the 

AUROC is not calculable on the evaluation dataset due to the lack 

of anomaly labels. The optimal hyperparameters vary considera-

bly depending on the machine, making it challenging to identify 

common ones. 

To meet the requirement of generalization, we determined 

feasible ranges for each machine and hyperparameter combina-

tion by considering not only the best configuration but also those 

leading to AUROCs that are up to 10% smaller. For the final eval-

uation, we determined the general hyperparameters so that they 

fall into the ranges of all machines from the development dataset. 

As anticipated, the results for the machines from the development 

dataset show a decline, as illustrated in Table 2 and Table 5 for 

the VAE and VQ-VAE, respectively. 

For this reason, we propose an alternative approach to opti-

mizing the hyperparameters for each machine in the evaluation 

dataset individually. While the AUROC is not directly computa-

ble for this evaluation data, the use of three alternative objectives 

allows for the maximization of the unknown AUROC. 

Firstly, a suitable detector must exhibit a minimal average re-

construction loss for the normal training samples. The second ob-

jective is to ensure that the distribution of normal samples from 

training and the distribution of the normal test samples from the 

evaluation set, measured by the difference of their means, are as 

similar as possible. Once the optimal solution has been identified 

for the first two objectives, the third objective is to maximize the 

average distance between the normal and the anormal distribution 

of the evaluation dataset. 

However, the evaluation dataset does not allow for the divi-

sion of normal and abnormal samples due to missing labels. 

Therefore, a heuristic is required. Based on the distribution of re-

construction losses after each epoch, the 30% of samples with the 

lowest reconstruction loss are expected to be normal, while the 

30% with the highest reconstruction loss are expected to be anom-

alous. This heuristic allows us to calculate the second and third 

objectives. Finally, we determine the optimal hyperparameters for 

each machine by optimizing the three defined objectives. Table 3 

and Table 6 display the results for the development dataset. 

4. SUBMISSION STRUCTURE 

For solving the second task of the DCASE 2024 challenge, we 

apply the two models and two hyperparameter optimization strat-

egies presented in this report. For comparison, we have submitted 

all four possible combinations of the aforementioned approaches: 

1) VAE with KL divergence and optimized hyperparameters 

2) VAE with KL divergence and fixed hyperparameters 

3) VQ-VAE with optimized hyperparameters 

4) VQ-VAE with fixed hyperparameters 
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5. CONCLUSION 

VAEs and VQ-VAEs can learn the acoustic fingerprint of a 

machine and detect deviations from it as anomalies. However, they 

also tend to suppress low power signal components, even though 

these portions of the spectrum indicate the anomaly of interest. 
Therefore, it is required to choose hyperparameters carefully. Es-

timating a common configuration for multiple machines can only 

be a compromise. However, if assumptions about the evaluation 

data set are possible, the hyperparameters are tunable for a specific 

machine. 

The objectives for this optimization proposed in this paper are 

reasonable and potentially lead to superior results. However, they 

are not sufficient to reliably discriminate between models that pro-

vide an excellent AUROC and those that do not. Therefore, further 

research is needed to identify a reliable function for estimating the 

AUROC of a trained model when it is not computable due to miss-

ing target labels. 
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Results for KL-VAE with Best Hyperparameters 

Machine 
Source 

AUROC 

Target 

AUROC 
pAUROC 

Bearing 72% 66.44% 55.32% 

Fan 69.32% 80.36% 56.32% 

Gearbox 70.76% 72.28% 53.95% 

Slider 98.8% 92.12% 91.26% 

Toy Car 59.36% 59.48% 53.58% 

Toy Train 86.88% 57.44% 55.47% 

Valve 69.96% 79.92% 59.37% 

Table 1 -  Results for the VAE trained with KL loss with best 

hyperparameters optimized directly for best 

AUROC. 

 
Results for KL-VAE with Fixed Hyperparameters 

Machine 
Source 

AUROC 

Target 

AUROC 
pAUROC 

Bearing 59.4% 45.525 52.05% 

Fan 45.84% 55.44% 49.37% 

Gearbox 63.08% 56.84% 52.79% 

Slider 73.88% 59.2% 55.74% 

Toy Car 62.24% 48.48% 52.32% 

Toy Train 69.48% 41.04% 53% 

Valve 68.04% 53.76% 50.26% 

Table 2 -  Results for the VAE trained with KL loss with 

fixed and generalized hyperparameters. 

 
Results for KL-VAE with Tuned Hyperparameters 

Machine 
Source 

AUROC 

Target 

AUROC 
pAUROC 

Bearing 67.48% 56.84% 52.32% 

Fan 46.32% 62.8% 51.74% 

Gearbox 58.2% 60.56% 53.16% 

Slider 80.12% 66.72% 57.74% 

Toy Car 51.8% 62.88% 50.05% 

Toy Train 77.8% 41.32% 52.68% 

Valve 64.56% 52.4% 49.95% 

Table 3 -  Results for the VAE trained with KL loss with 

tuned hyperparameters according to the recon-

struction losses in training and the differences of 

the anormal and normal distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results for VQ-VAE with Best Hyperparameters 

Machine 
Source 

AUROC 

Target 

AUROC 
pAUROC 

Bearing 75.04% 64.44% 55.74% 

Fan 62.84% 68.84% 50.79% 

Gearbox 81.44% 69% 51.26% 

Slider 98.12% 96.12% 90.58% 

Toy Car 59.16% 54.8% 55.53% 

Toy Train 85.96% 58.2% 53.95% 

Valve 62.72% 64.4% 51.95% 

Table 4 -  Results for the VQ-VAE with best hyperparame-

ters optimized directly for best AUROC. 

  

Results for VQ-VAE with Fixed Hyperparameters 

Machine 
Source 

AUROC 

Target 

AUROC 
pAUROC 

Bearing 67.24% 55.04% 54.79% 

Fan 46.56% 60.4% 48.89% 

Gearbox 58.52% 61.08% 52.94% 

Slider 66.04% 51.84% 50.79% 

Toy Car 58.51% 48.88% 53.16% 

Toy Train 67.76% 43.12% 52.89% 

Valve 75.6% 56.64% 51.16% 

Table 5 - Results for the VQ-VAE with fixed and  

generalized hyperparameters. 

 
Results for VQ-VAE with Tuned Hyperparameters 

Machine 
Source 

AUROC 

Target 

AUROC 
pAUROC 

Bearing 73.2% 56.92% 53.26% 

Fan 55.84% 53.08% 51% 

Gearbox 68.56% 62.96% 51.63% 

Slider 88.88% 79.12% 68.05% 

Toy Car 51.6% 63.96% 58.16% 

Toy Train 72.64% 44.4% 53.42% 

Valve 67.16% 60.36% 52.89% 

Table 6 -  Results for the VQ-VAE with tuned  

hyperparameters according to the reconstruction 

losses in training and the differences of the anor-

mal and normal distributions. 
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