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ABSTRACT

This technical report describes our submission systems for Task 3
of the DCASE2024 challenge: Sound Event Localization and De-
tection (SELD) Evaluated in Real Spatial Sound Scenes. To ad-
dress the audio-only SELD task, we utilize a Resnet-Conformer as
the main network. Additionally, we introduce a branch to receive
power cue features, specifically log root mean square (log-rms).
We employ various data augmentation techniques, including audio
channel swapping (ACS), random cutout, time-frequency masking,
frequency shifting, and AugMix, to enhance the model’s generaliza-
tion. For the audio-visual SELD task, we also augment the visual
modality in alignment with ACS. The audio and visual embeddings
are sent to parallel Cross-Modal Attentive Fusion (CMAF) blocks
before concatenation. We evaluate our approach on the dev-test set
of the Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23)
dataset.

Index Terms— Sound event localization and detection, data
augmentation, ensemble, audio-visual fusion

1. AUDIO-ONLY TRACK

This part will provide a detailed description about the four parts of
the audio-only approach: input features, network architecture, data
augmentation and post-processing.

1.1. input features

We first followed the setup of the baseline model and extracted fea-
tures from First Order Ambisonics (FOA) audio, including 7 chan-
nels: 4 channels of logmel spectrograms and 3 channels of intensity
vector (iv). Additionally, we extracted the root-mean-square (RMS)
value for each frame and took its logarithm as an additional feature
to improve sound source distance estimation, named as log-rms.

1.2. network architecture

We used Resnet-Conformer[1] as the main network for the SELD
task, with the output format adopting multi-ACCDOA[2]. This for-
mat is used to predict sound event detection (SED), direction of
arrival (DOA), and distance in the case of using a single-branch
network, To better extract audio information, we introduced Atten-
tional Feature Fusion (AFF) in the resblock. The AFF has also been

proven effective in audio pattern recognition[3]. The Conformer
structure is more sensitive to higher time resolution[1]. Therefore,
we moved the temporal pooling in ResNet to after the Conformer,
allowing the Conformer to extract more detailed information. For
pooling, we used Attentive Statistics Pooling[4] on the time dimen-
sion instead of maxpool or avgpool, which is also applied in Au-
tomatic Speech Recognition (ASR). The structure of this model is
shown in Fig. 1(a)

To get better performance in sound source distance estimation,
we introduced an additional branch based on the main network.
This branch accepts log-rms feature input. The high-level represen-
tations are concatenated before send to the subsequent conformer.
Since the log-rms feature merges the frequency dimension, we used
1D operations (e.g., conv1d) in these side resblocks. The structure
of additional side branch model is shown in Fig. 1(b)

1.3. data augmentation

To increase the diversity of our dataset, we convolved sound sam-
ples from FSD50K[5] and FMA[6] with the TAU-SRIR DB[7],
generating more spatial audio samples. Using SpatialScaper[8],
we have generated a total of 3000 one-minute audio clips, with a
maximum overlap of three events per clip. Additionally, we used
audio channel swap technique [9] (ACS) to enhance the accuracy
of DoA localization. ACS achieved an 8-fold increase in sam-
ple quantity by swapping audio channels and adjusting their corre-
sponding spatial positions. After extracting the spectrograms of the
samples, we applied AugMix[10], which is widely used in the im-
age processing domain, to the spectrograms. The spectrogram op-
erations include cutout[11], time-frequency masking[12], and fre-
quency shifting[13]. AugMix was sampled with a width k of 3 and
a depth of 3.

1.4. post-processing

Firstly, we applied ACS to the test samples in the same way as with
the training data, rotating the results back to their original orienta-
tion based on the swap order. We averaged the total of 8 samples
generated from the same sample. Additionally, we used a 1-second
hop length on an input length of 5 seconds. This overlap generated 5
results for each time-overlapping input, except for the start and end
parts of the audio. By simultaneously applying ACS and overlap
addition, we could generate 40 results from a single input. Averag-
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Figure 1: The overview of our models, (a) Resnet-Conformer network, (b) Resnet-Conformer network with side branch, (c) Audio-Visual
Fusion Network

ing these 40 results effectively reduced the variability. Lastly, unlike
the default SED threshold of 0.5, we used different SED thresholds
for different classes.

2. AUDIO-VISUAL TRACK

This part will provide a detailed description about the four parts
of the audio-visual approach: input features, network architecture,
data augmentation and post-processing.

2.1. input features

In the audio-visual section, the audio features follow the audio-only
track setup, extracting 7-channel features from FOA audio, includ-
ing 4-channel logmel spectrograms and 3-channel iv. The corre-
sponding video is segmented into frames at a frame rate of 10 fps.
Each frame is processed using ResNet50[14] with default weights
to extract embedding vectors. Unlike the baseline, the embedding
vectors retain the channel dimension, and the final pooling layer is
modified to perform avgpooling on both the width and height.

2.2. network architecture

The model simultaneously receives audio and corresponding video
feature inputs. In the audio encoder part, we use the same structure
as in the audio-only section, with 4 resblocks and 2 conformers.
The overall structure of audio-visual model is shown in Fig. 1(c)

In the video encoder part, the features extracted by ResNet50
are dimensionally reduced through a linear layer, followed by 2

layers of conformers, resulting in video embedding vectors. The
time dimension of the audio vectors differs from that of the video
vectors. Consequently, the video vectors are replicated to match the
time dimension of the audio vectors before entering the fusion layer.

The fusion layer consists of 2 layers of Cross-Modal Attentive
Fusion[15] (CMAF) blocks. The fused audio and video vectors are
then concatenated to form fused features, which are fed into a fully
connected layer to output the multi-ACCDOA vectors.

2.3. data augmentation

ACS applies channel swapping to the audio, resulting in an 8-fold
increase in augmented data. Correspondingly, Audio-Visual Chan-
nel Swap[16] (AVCS) rotates or flips video frames to achieve video
data augmentation.

2.4. post-processing

For audio and video, we follow the post-processing setup used in
the audio-only track. We first apply ACS and AVCS to generate
more results by a factor of 8. Then, we apply overlap addition to
get more results. Finally, we average these results.

3. EXPERIMENTS

3.1. Experimental settings

In our experiments, we only used FOA format audio. The sampling
rate was set to 24 kHz, the STFT frame length was 40 ms, and the
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Table 1: The SELD performance of our system for dev-test set.

model modality F20◦/1 DOAE RDE SELDscore

model#a audio 39.2% 15.5° 0.30 0.318
model#b audio 41.3% 15.4° 0.29 0.316
ensemble#1 audio 43.2% 14.6° 0.29 0.313
ensemble#2 audio 43.7% 14.0° 0.30 0.301
ensemble#3 audio 44.1% 13.7° 0.30 0.298
ensemble#41 audio - - - -
ensemble#5 av 44.4% 15.2° 0.27 0.305
ensemble#6 av 46.7% 14.2° 0.28 0.297

1 Ensemble#4 used the entire development set, so specific metrics are not
provided.

hop length was 20 ms. We used 64 mel filters. The input length
was 5 seconds, or 250 frames. The model was trained with the
Adam optimizer for 120 epochs, with a learning rate set to 0.001,
gradually decaying to 0.0001 after 80 epochs.

We evaluated our SELD system using official metrics, including
the location-dependent F1 score, direction-of-arrival error (DOAE),
and relative distance error (RDE).

3.2. results

Tabel 1 shows the performance of our system on the development
set. In the model ensemble part, we averaged the outputs from dif-
ferent networks and augmentation methods.
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