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ABSTRACT

Over the past few years, self-supervised methods have significantly
advanced the field of Anomalous sound detection. However, the
real-world application of these methods is often hampered by the
lack of available prior knowledge and auxiliary labels, which re-
stricts the models’ ability to generalize. In the DCASE 2024 Chal-
lenge Task 2, attribute information for several machine types is ab-
sent from both the development and evaluation datasets, reflecting
the realities of practical scenarios. To solve the above problems, we
design two unsupervised machine anomalous sound detection mod-
els and an ensemble system that achieves better performance than
the baseline model.

Index Terms— Anomalous Sound Detection, Unsupervised
Learning, Diffusion, Audio Pretrained Model, GMM

1. INTRODUCTION

With the development of industrial technology, it is necessary to en-
sure the continuous and stable operation of industrial machines. In
recent years, with the development of machine learning and deep
learning technology, the method of using sound features to deter-
mine whether an industrial machine is functioning properly has be-
come popular, and this method is often referred to as Anomalous
Sound Detection (ASD).

The goal of Detection and Classification of Acoustic Scenes
and Events (DCASE) task 2 [1] is to train a model using the sound
of the machine when it is working normally, and finally the model
has the ability to judge abnormal sounds. As of 2023, the compe-
tition hopes that the methods proposed by the contestants can have
a certain domain generalization ability, and at the same time, they
can have a certain ability to deal with first-shot problems [2]. As
a result, in 2023, the development dataset and evaluation dataset of
the task contain completely different machine types, which makes
it impossible for entrants to set hyperparameters for each machine
type for better overall performance.

Nonetheless, there is one category of approaches that have
remained popular over the past few years, and that is the self-
supervised learning method based on machine attributes [3]. People
usually use the attributes of the machine as a label to train a sound
feature extractor and classifier, and calculate the anomaly score of
the sound by clustering latent features [4] or indirectly using the
output results of the classifier [5]. However, attribute information
for real-world machine sounds are not always easy to obtain, for ex-

ample, some machines always operate under the same conditions,
or the operating conditions of the machines cannot be measured by
a fixed value. In order to simulate the difficulty of obtaining at-
tribute information for machines in reality, the attribute information
of some machine types has been removed for the first time in the
2024 competition [6].

In this case, we design machine abnormal sound detection
methods based on the following assumptions: First, the attribute
information of the machine is always difficult to obtain, so we do
not use any attribute information in the development set. Second,
the model needs to be able to handle first-shot problems, so we set
the same hyperparameters for all machine types, both for the devel-
opment set and the evaluation set.

Fine-tuning the pre-trained model is a self-supervised abnor-
mal sound detection method with certain generality [7]. In the past,
people often used the machine’s attribute information to fine-tune
the pre-trained model like HuBERT [8]. In this competition, we
use machine type classification as an auxiliary task to fine-tune the
pre-trained audio tagging model CED [9], and achieve better per-
formance than the baseline model [10]. Diffusion models [11] are
widely used in computer vision fields such as image anomaly detec-
tion. We explore the use of a diffusion model for anomalous sound
detection, and improve the performance of the model through mask-
ing. The popular deep learning model has large parameters and
slow training speed, TWFR-GMM [12] has proven to be an effi-
cient method for anomalous sound detection based on unsupervised
machine learning.

The paper is organized as follows: Section 2 describes our sub-
mitted four systems. The first three systems are named AnoCED,
CMDM, and TWFR-GMM [12], respectively, while the fourth sys-
tem is an ensemble system of the first three systems. Section 3 de-
scribes the results of four systems on the development dataset and
our discussions.

2. SYSTEM SUBMISSION

The development dataset consists of two datasets: MIMII DG [13]
and ToyADMOS2 [14]. We all use mel-spectrogram as the input
feature of the model, but the parameters are different for different
models. For AnoCED we follow the default parameters of the CED
[9], setting the window length to 512, the hop length to 160, and
the number of mel filterbanks to 64. For CMDM, we set the win-
dow length to 1024, the hop length to 512, and the number of mel
filterbanks to 128 to obtain the feature size suitable for training the
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diffusion model. For TWFR-GMM, we use the same parameters as
CMDM.

2.1. AnoCED

CED [9] is a straightforward training framework that refines student
models through large teacher ensembles using consistent instruc-
tion. The model was pre-trained in the AudioSet [15]. We choose
the CED-Mini for fine-tuning because of its combination of perfor-
mance and small size.

We simply replace the output layer of the original model with
a new linear layer, and we fine-tune the model to have the ability to
distinguish the machine type of input audio machine. For example,
the output size of the model is 7 for the development set and 9 for
the evaluation set. We use the cross-entropy loss to train the model.
We use the Adam optimizer [16] and the learning rate is 1e-4. Our
model was trained for 200 epochs.

After the model are trained, we use ensemble method to calcu-
late the anomaly score. We use a combination of PCA, KNN and
model linear layer outputs to evaluate whether there are anomalies
in the sound. We use the embedding of all the training samples
extracted from the CED model to train the PCA and KNN mod-
els respectively. Let SKNN and SPCA be the anomaly score cal-
culated by the KNN model and the PCA model, respectively, and
SClassifier is the negative log-softmax of the model output, we
calculate the anomaly score via:

SAnoCED = SKNN + SPCA + 1000SClassifier (1)

2.2. CMDM

We introduce the Context-Masking Diffusion Model (CMDM) for
unsupervised anomalous sound detection. We conceptualize the dif-
fusion process as masks that introduce noise into specific areas of
the audio features. The denoising phase of the Denoising Diffusion
Probabilistic Models (DDPM) [11] then leverages both the contex-
tual information from the unmasked areas and the noise information
from the masked areas to recover the original signal. Furthermore,
recognizing the varied nature of potential anomalies across different
types of machine, we have developed versatile masking strategies
that span across different dimensions—time frames (T) and patches
(P) to enhance the robustness and efficacy of the model in detecting
anomalies in diverse machine sounds.

In our method, each input data x is partitioned into L positions
with two strategies: partitioning from the dimensions of T and P.
We uniformly sample positions with an interval l from x with a rate
of λ at a fixed grid to obtain the masked positions ml. During the
forward diffusion process, noise is only added to xij within ml,
where xij is the element of x. Consider ML ∈ RT,F a binary
masking matrix where the elements overlap with ml are set to one
while others are set to zero, representing whether to add noise. A
context-masking process to obtain the sample x̃t is introduced after
every forward and reverse step via:

x̃t = xt ⊙ML + x0 ⊙ ¬ML (2)

where ⊙ denotes element-wise multiplication and ¬ denotes
element-wise negation. In the training phase, x̃t is fed into ϵθ (x̃t, t)
to estimate the given noise of both noisy positions ML and original
positions ¬ML via:

Ldenoising =


∥∥∥ϵt − ϵθ (xt, t)

∥∥∥2

, xij ∈ ML∥∥∥ϵθ (xt, t)
∥∥∥2

, xij ∈ ¬ML

(3)

where the prediction error of both positions is minimized. The ar-
chitecture of denoising U-Net we used is same as [17]. We divide
the Mel spectrogram features into 128 × 128 fragments as model
inputs. The Adam optimizer with a learning rate of 1e-4 is used
for optimization. For each machine type, the model is trained with
64000 steps. For more details, you can refer to the original paper
[11] or our technical report from last year [18]. We used the mean
of the top 64 absolute errors in the input and output of the model
as the sound anomaly score. Let ST and SP be the anomaly score
calculated by two models trained using T and P mask strategies,
respectively. We calculate the final anomaly score via:

SCMDM = 0.75ST + SP (4)

2.3. TWFR-GMM

We simply reproduce the TWFR-GMM proposed by Guan et al.
[12]. We believe TWFR-GMM is a highly efficient machine
learning method for detecting anomalous sounds. We have con-
ducted a number of experiments using the Time-Weighted Fre-
quency Domain Representation proposed in the original paper, in-
cluding training an autoencoder or a self-supervised neural network
using TWFR. But in fact, simply using GMM for anoamlous sound
detection can achieve the best performance.

We don’t use any hyperparameter search techniques. For all
machine types, we set the number of mixture components of GMM
to 2 and the decay weighting parameter of GWRP to 1. SMOTE
[19] is employed to mitigate sample insufficiency by over-sampling
the samples across all machine types in the target domain.

2.4. Ensemble system

We use a model ensemble technique based on weighted anomaly
scores to achieve better model robustness. Let SCED , SGMM

and SCMDM be the anomaly score calculated by the AnoCED
model, TWFR-GMM model and CMDM respectively, we calculate
the anomaly score for the ensemble system via:

Sensemble = SCED + SGMM + 1000SCMDM (5)

3. RESULTS AND DISCUSSIONS

The results of our anomalous sound detection experiments on the
development dataset are shown in table 1. In general, the proposed
CMDM system achieves the best harmonic average performance.
Especially for the target domain, the CMDM achieves the best AUC
on four machine types, indicating that the proposed CMDM has
a certain domain generalization ability. Although the proposed
AnoCED method does not achieve the best hmean performance,
the overall performance is more stable, and the model complex-
ity and training cost are much smaller than those of CMDM. The
TWFR-GMM method appears to have achieved the highest num-
ber of best results, however, it has the worst hmean performance.
This is due to its low tAUC on some machine types, which proves
that its domain generalization ability needs to be improved. The
ensemble model achieves the best sAUC on some machine types,
but the overall hmean performance is not the best, because on some
machine types, the model with poor domain generalization ability
drags down the model with better performance. Therefore, in the
future, we will focus on how to use model ensemble methods to
achieve better domain generalization capabilities.
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4. CONCLUSION

In DCASE 2024 task 2, we propose two unsupervised machine
anomaly sound detection algorithms that do not make use of ma-
chine attribute information: AnoCED and CMDM, and introduce
TWFR-GMM [12] to design ensemble system. The proposed
method has certain performance, and we will further improve the
domain generalization ability of the model in the future.
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Table 1: Results of submitted systems on DCASE 2024 task 2 development set. Best in bold.

Machine AnoCED CMDM TWFR-GMM Ensemble
sAUC↑ tAUC↑ pAUC↑ sAUC↑ tAUC↑ pAUC↑ sAUC↑ tAUC↑ pAUC↑ sAUC↑ tAUC↑ pAUC↑

bearing 60.94 63.98 54.63 60.65 65.84 57.00 53.24 58.60 59.11 60.16 63.70 56.37
fan 68.88 43.12 54.11 57.62 72.54 56.68 79.44 32.40 50.84 69.58 42.62 57.11
gearbox 71.88 68.32 58.42 57.02 60.12 52.74 83.50 79.12 57.79 74.66 72.42 57.95
slider 81.82 54.24 49.16 85.74 55.82 55.05 80.90 75.12 58.32 92.22 48.26 48.89
ToyCar 50.10 43.84 47.58 53.84 48.62 48.84 62.62 33.70 51.58 55.64 47.42 48.84
ToyTrain 63.04 50.42 49.05 76.34 55.94 51.84 73.30 45.14 49.16 77.38 50.54 49.74
valve 59.22 68.00 56.95 59.46 59.67 50.53 52.12 46.44 51.11 64.62 65.32 54.68
hmean 56.42 57.99 54.96 57.80


