
Toward in-context bioacoustic sound event detection

Benjamin Hoffman
Earth Species Project

benjamin@earthspecies.org

David Robinson
Earth Species Project

david@earthspecies.org

Abstract—We introduce an in-context learning approach to
bioacoustic sound event detection. Our approach consists of
a large pre-trained transformer model which, when prompted
with a small amount of labeled audio, directly predicts de-
tection labels on unlabeled audio. To train our model, we
constructed a large audio database, which we used to generate
acoustic scenes with temporally fine-grained detection labels.
On the validation set for the 2024 DCASE Few-shot bioacous-
tic event detection challenge, our best-performing submission
achieves an average F1 score of 0.584, improving on the
challenge baseline by 0.063.

1. Introduction

Few-shot learning is a promising approach for process-
ing bioacoustic data for scientific applications [1]. In natural
language processing, few-shot learning has been formulated
as in-context learning [2], [3], where a large language model
performs few-shot learning tasks without fine-tuning. This is
accomplished by presenting the model with labeled support
data, as well as unlabeled query data, in a single text prompt.
In-context learning has been adopted in other domains, such
as image segmentation [4] and text-to-speech synthesis [5].

In our submission1 to Task 5 of the 2024 DCASE
Challenge (“Few-shot bioacoustic event detection”), we de-
veloped an in-context learning framework for bioacoustic
sound event detection. We trained a large transformer-based
model to directly predict detection labels on unlabeled query
audio, without any fine-tuning. The input prompt to this
model is the labeled support audio, as well as the unlabeled
query audio (Figure 1A). Unlike prototypical networks [6],
which have been used in previous iterations of the DCASE
Challenge, this framework allows the model to attend to
support and query audio simultaneously, and does not rely
on any metric learning.

To develop our model, we constructed a large database
of background audio and bioacoustic sound events from
publicly available sources. We used this database to gen-
erate acoustic scenes, together with temporally fine-grained
detection labels, on-the-fly. By doing so, we gain access
to the scale of data required to train a large transformer
model (Figure 1B). Additionally, we can generate data that

1. Model weights and few-shot inference API will be posted at https:
//github.com/earthspecies/fewshot.

Figure 1. Summary of our system. A: In-context learning approach. B: Data
generation procedure.

reflects a domain shift between support and query data [1],
for instance, by changing the background audio between a
support example and its associated query example.

On the 2024 validation set, our best performing submis-
sion achieves a F1 score of 0.584, which is an improvement
of 0.063 over the challenge baseline system. Overall, our
work introduces two approaches to few-shot bioacoustic
sound event detection: in-context learning and on-the-fly
training data generation. Future work could focus on refining
our model architecture and training settings, as well as
broadening our approach to data generation to reflect a wider
set of detection problems in the training data.

2. Data Generation

To create our training data, we gather background audio
from publicly available sources, and from this audio extract
short sub-clips called pseudo-vocalizations or pseudovox.

https://github.com/earthspecies/fewshot
https://github.com/earthspecies/fewshot

To generate data, we add pseudovox into randomly chosen
background audio clips. We use the start- and end-times of
these pseudovox as detection labels for the generated data.
Throughout, we apply data augmentations to increase the
variety of sounds we produce.

2.1. Data Pre-processing

We constructed a large database of audio drawn from
xeno-canto [7], AudioSet [8], and TUT acoustic scenes [9]
(Table 1). In xeno-canto, each recording is tagged with at
most one focal species; we considered species with at least
25 recordings (4487 species), and randomly sampled 10
recordings from each. We also sampled 1000 recordings
tagged as Soundscape. From AudioSet, we used the bal-
anced training and evaluation datasets. From TUT, we used
the entire development dataset. All recordings were trimmed
to a maximum duration of 60 seconds. We included all of
these recordings in our set of background audio clips.

For each recording, we applied a sequence of signal-
processing steps to produce a set of short events called pseu-
dovox that could plausibly resemble animal vocalizations.
We resampled each recording to 22.5 kHz, and then used
BirdMixit [10] to separate the recording into four stems.2
Next, for each stem, we computed an amplitude envelope,
and extracted contiguous segments where the amplitude
envelope exceeded 25% of the maximum amplitude of the
raw recording. Finally, we applied BirdNet [11] to each of
these segments. We set aside all segments where BirdNet
detected nothing, a non-biological sound source (e.g. En-
gine or Fireworks), or a human-generated sound source.
The remaining segments became our set of pseudovox. In
subsequent steps, we used the BirdNet prediction for each
pseudovox as its pseudo-label (Table 1, right). In the end, we
obtained most pseudovox from xeno-canto, but did obtain
some from AudioSet and TUT.

Our audio database relied on freely available bird-related
data (xeno-canto) and pre-trained machine learning models
(BirdMixit, and BirdNet). Our assumption was that birds
make a wide variety of sounds, many of which resemble
those made by other species. Future work could extend data
collection methods to other taxa.

2.2. Data Generation Procedure

Using our audio database, we develop a method for gen-
erating acoustic scenes with fine-grained detection labels,
on-the-fly during model training. We focus on generating
the widest variety of these scenes as possible, making our
approach loosely related to domain randomization [12] that
is used in other simulated-to-real data transfer problems.

To generate a scene, we do the following:

1) Sample two background audio clips, which form
the support background audio and query back-
ground audio. With probability 0.5, these two audio

2. BirdMixit is included in Google Perch, which is allowed under
DCASE challenge rules.

clips are the same. These are looped to 40 seconds
and 10 seconds, respectively.

2) Sample λ from {.04, .08, .17, .33} calls/second.
Sample ns ∼ Poisson(40λ), nq ∼ Poisson(10λ).

3) Sample a pseudo-label l uniformly at random. Sam-
ple a background “origin” audio clip a that gave
rise to ≥ 4 pseudovox of pseudo-label l.

4) Sample with replacement nq pseudovox with
pseudo-label l that came from a. Sample nq start
times from Unif(0, 10).

5) Sample with replacement ns pseudovox with
pseudo-label l that came from a, that were not
sampled in step 4. Sample ns start times from
Unif(0, 40).

6) Sample SNRdB ∼ Unif(−5, 2). Sample r from
{0.5, 1, 2}

7) Resample the nq pseudovox by a factor of r. Add
them to the query background audio at the chosen
start times, with the chosen signal-to-noise ratio
SNRdb. Do the same for the ns support pseudovox.

8) Record the start and end times of these pseudovox.
These are the events labeled POS in our data. Other
times are labeled NEG.

9) Repeat steps 2-7 to add additional distractor events;
do not record their start and end times.

We also sample from different alterations of this gen-
eration process, which we call scenarios. The scenarios we
used are summarized in Table 2.

3. Transformer model

We propose a transformer architecture predicting on the
query audio while prompted by the support and query. Our
architecture consists of an audio encoder, a context encoder,
and an aggregation module (Figure 2).

3.1. Audio Encoder

Given a support and query audio pair, we independently
pass support and query audio in 10-second windows through
the audio encoder, producing frame-level embeddings (Fig-
ure 2A). The audio encoder is initialized from ATST-
FRAME [13], which was pretrained on AudioSet using self-
supervision. The input to the audio encoder is mono audio
resampled to 16KHz, and the output audio embedding is a
9216-dimension frame-level embedding at 25 Hz. We chose
to window the data because of the quadratic complexity
of transformer models, and we chose a 10-second window
because it matched the pre-training setup of ATST-FRAME.

3.2. Context Encoder

The context encoder (Figure 2B) is a second trans-
former, which processes label-enriched support in the same
sequence as the query in order to tailor embeddings to the
few-shot support prompt.

Data Source # Files Sampled Total Duration (hours) # Pseudovox Sampled Pseudovox Duration (hours) # Pseudolabel types
xeno-canto 45870 470 778940 72.5 3263
AudioSet 31361 86 66882 6.7 1964

TUT 4680 13 2641 0.2 575

TABLE 1. SUMMARY OF AUDIO DATABASE USED TO GENERATE ACOUSTIC SCENES WITH DETECTION LABELS.

Scenario Name Effect on generation process
Basic None; described in main text.

Low SNR In step 5, SNRdB ∼ Unif(−10,−5). Background audio sampled only from TUT.
Fine-grained SNR Pseudovox for POS and distractor events are drawn from the same origin clip and have the same pseudo-label.

However, distractor events are lower SNR than POS events.
Disjunction across pseudo-labels Pseudovox for POS events are drawn from two pseudo-labels, from two different origin clips
Disjunction within pseudo-labels Pseudovox for POS events still represent one pseudo-label, but are drawn from two different origin clips.

Generalization within pseudo-labels Pseudovox for POS events in query audio still represent one pseudo-label, but are drawn from different origin
clip than the support POS pseudovox. Query pseudovox are required to be similar duration to support pseudovox.

Fine-grained general Pseudovox for distractor events are required to be similar duration to the pseudovox for POS events.

TABLE 2. “SCENARIO” VARIANTS OF DATA GENERATION PROCEDURE.

Audio Encoder Audio Encoder Audio Encoder Audio Encoder

Support audio Query audio

A.

B.

+POS/NEG +QUERY +POS/NEG +QUERY +POS/NEG +QUERY

Context Encoder Context Encoder Context Encoder

C.

CLS

Aggregation Module

Logits

…

…

10 sec 10 sec 10 sec 10 sec

…

…

Figure 2. Summary of how our model makes predictions for one 10-
second window of query audio. A: 10-second audio windows are passed
through audio encoder B: Encoded labels are added to support and query
embeddings, which are concatenated and passed to the context encoder C:
Context embeddings are passed into the aggregation module, which makes
a final detection prediction for the query window.

We one-hot encode labels for each frame; possible labels
are POS for events of interest, NEG for times where there
are no events of interest, and QUERY for audio where the
model should make a prediction. These are passed through

a linear layer and added directly to the audio embeddings.
Then, for each (10-second support window, 10-second query
window) pair, the enriched support and query audio embed-
dings are concatenated and fed into the context encoder.

The context encoder has an architecture matching BERT-
small [14], but with SwiGLU activation [15] and rotary
positional encoding [16]. The input to the context encoder is
of shape [9216, 500], corresponding to 10 seconds of support
audio at 25 Hz, and 10 seconds of query audio at 25 Hz.
We retain only the output corresponding to the 10 seconds
of query audio, which is of shape [512, 250].

3.3. Aggregation Module

We initially divided our audio into 10-second windows,
and therefore we need to combine information from each
support window and make a final prediction. To do so, we
introduce an aggregation module, which is an additional
transformer (Figure 2C). For a fixed query window Q,
consider the pairs (S0, Q), . . . , (SK−1, Q), where each Sk is
a distinct support window. The context encoder produces K-
many frame-level context embeddings c0, . . . , cK−1 associ-
ated with the query window Q, each of shape [512, 250]. The
aggregation module makes a final prediction of the detec-
tions for Q based on these ck. For each frame 0 ≤ i < 250,
the aggregation module takes as input the set of 512-
dimension feature vectors {c0[:, i], . . . , cK−1[:, i]}, as well
as a learned CLS token. We retain only the output associated
with the CLS token. This is passed through a final linear
layer to produce a one-dimensional vector, interpreted as a
logit for the detection probability of frame i.

The aggregation model’s architecture matches BERT-
tiny with SwiGLU activation and no positional encoding.
We exclude positional encoding hoping to improve length-
extrapolation at inference [17] and because the aggregated
tokens correspond to the same frame ck[:, i] and lack an
inherent order beyond the original ordering of the Sk. By
including this aggregation module, we also avoid post-hoc

aggregation techniques such as those used in [4]. The entire
model, including the aggregation module, is trained end-to-
end on our generated data.

3.4. Training

We train the model to predict the binary frame labels
of the query on the generated dataset. We train for 106

steps with focal loss [18] and the AdamW optimizer [19]
with weight decay of .01 for non-bias parameters. We use
a cosine-annealing learning rate schedule with 105 steps
warmup, a peak learning rate of 5× 10−4, and a batch size
of 64. Some of our submissions were selected from mid-
training checkpoints based on performance on the validation
set. The audio encoder was frozen for the entire duration of
training; unfreezing the audio encoder during training may
improve our system’s performance. Loss measured on our
generated training data had plateaued by the end of training,
indicating that further training with these settings would not
improve performance further.

3.5. Few-shot learning

Few-shot learning is performed by presenting the trained
model with the prompt of annotated support audio, together
with unlabeled query audio. While no fine-tuning is re-
quired, the results can be influenced by the format of the
prompt, as well as post-processing strategies.

3.5.1. Prompt Engineering. We sub-sample from the pro-
vided support audio to avoid extremely long prompt dura-
tions. To do so, we divide the support audio into chunks
of duration D seconds, and then discard chunks without
positive events until we have M chunks remaining, or until
we cannot discard any more chunks. In our submission, we
use D = 8 and M = 5; Initial experiments indicated that
model outputs are not sensitive to small changes in these
parameters.

After sub-sampling the support audio, we create 10-
second support and query windows, using a 50% overlap
for each. For each 10-second query window, we put all
support windows, together with this query window, as a
single prompt for the model. We do this for each query
window, retaining the middle 50% of the model outputs for
each query window, in order to avoid boundary artifacts.

3.5.2. Post-Processing. The output of our model is a series
of logits, corresponding to detection probabilities at 25 Hz.
To arrive at start and end time predictions, we accept as
positive detections all frames with detection logit above a
threshold τ ∈ R. We fill in gaps between detections, if the
gap is less than min{0.5·vmin, 1} seconds, and then discard
detected events of duration less than min{0.5 · vmin, 0.5}
seconds. Here vmin is the minimum duration of an event
provided in the support set.

The threshold τ for detections can be adapted to each
few-shot task (i.e., each full audio file in the DCASE
validation set). To determine this threshold, we set a prior

distribution pthresh(τ) = N(0, 1) on the logit threshold τ .
Next, we estimate the distribution of event durations pdur
in the entire audio file as p̂dur(d) = N(µ, σ), where µ and
σ are, respectively, the sample mean and corrected standard
deviation of the durations of events in the support set. For a
fixed threshold τ ′, we obtain a set of detected events, whose
durations form a set durs(τ ′). We choose our final value of
τ as the logit value that maximises the average likelihood
of detection durations, weighted by pthresh:

τ = argmaxτ ′

pthresh(τ
′)

|durs(τ ′)|
∑

d∈durs(τ ′)

p̂dur(d)

 .

We found that this adaptive thresholding sometimes im-
proved our results by a small margin (Table 3) over a fixed
threshold of τ = 0.

HB ME RD PB PB24 PW All All, τ =
0

1 .64 .67 .51 .35 .51 .70 .533 .515
2 .65 .63 .50 .46 .58 .82 .584 .533
3 .66 .59 .47 .43 .54 .81 .559 .554
4 .61 .77 .48 .22 .40 .40 .412 .444

TABLE 3. SUBMISSION RESULTS (F1 SCORE) ON 2024 DCASE TASK 5
VALIDATION SET. RIGHTMOST COLUMN IS WITHOUT ADAPTIVE

THRESHOLDING. SUBMISSION AND PER-DATASET SCORES (HB-PW) IN
EACH ROW CORRESPOND TO THE THRESHOLDING METHOD IN BOLD.

4. DCASE Results and Conclusion

The evaluation metrics for our submitted models are
provided in Table 3. Overall, our best system makes a
small improvement to the challenge baseline. However, our
submission introduced two new approaches for this task: in-
context learning, and on-the-fly training data generation. We
treat our submission as a proof-of-concept for this general
approach. We expect that further work in this direction
would yield further improvements.

Acknowledgments

The authors would like to thank the competition or-
ganizers for their efforts, as well as Maddie Cusimano,
Masato Hagiwara, Sara Keen, Jen-Yu Liu, Marius Miron,
and Gregory Yauney for valuable discussions and feedback
during the course of the project.

References

[1] J. Liang, I. Nolasco, B. Ghani, H. Phan, E. Benetos, and D. Stowell,
“Mind the domain gap: a systematic analysis on bioacoustic sound
event detection,” 2024.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
models are few-shot learners,” Advances in neural information pro-
cessing systems, vol. 33, pp. 1877–1901, 2020.

[3] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun,
J. Xu, and Z. Sui, “A survey on in-context learning,” arXiv preprint
arXiv:2301.00234, 2022.

[4] X. Wang, X. Zhang, Y. Cao, W. Wang, C. Shen, and T. Huang,
“Seggpt: Towards segmenting everything in context,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision,
pp. 1130–1140, 2023.

[5] S. Chen, S. Liu, L. Zhou, Y. Liu, X. Tan, J. Li, S. Zhao, Y. Qian, and
F. Wei, “Vall-e 2: Neural codec language models are human parity
zero-shot text to speech synthesizers,” 2024.

[6] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” Advances in neural information processing systems,
vol. 30, 2017.

[7] W.-P. Vellinga and R. Planqué, “The xeno-canto collection and its
relation to sound recognition and classification.,” in CLEF (Working
Notes), 2015.

[8] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE international
conference on acoustics, speech and signal processing (ICASSP),
pp. 776–780, IEEE, 2017.

[9] A. Mesaros, T. Heittola, and T. Virtanen, “Tut database for acoustic
scene classification and sound event detection,” in 2016 24th Eu-
ropean Signal Processing Conference (EUSIPCO), pp. 1128–1132,
IEEE, 2016.

[10] T. Denton, S. Wisdom, and J. R. Hershey, “Improving bird classifica-
tion with unsupervised sound separation,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 636–640, IEEE, 2022.

[11] S. Kahl, C. M. Wood, M. Eibl, and H. Klinck, “Birdnet: A deep learn-
ing solution for avian diversity monitoring,” Ecological Informatics,
vol. 61, p. 101236, 2021.

[12] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS), pp. 23–30, IEEE,
2017.

[13] X. Li, N. Shao, and X. Li, “Self-supervised audio teacher-student
transformer for both clip-level and frame-level tasks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2024.

[14] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,”
arXiv preprint arXiv:1908.08962, 2019.

[15] N. Shazeer, “Glu variants improve transformer,” arXiv preprint
arXiv:2002.05202, 2020.

[16] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer:
Enhanced transformer with rotary position embedding,” Neurocom-
puting, vol. 568, p. 127063, 2024.

[17] A. Kazemnejad, I. Padhi, K. Natesan Ramamurthy, P. Das, and
S. Reddy, “The impact of positional encoding on length generalization
in transformers,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, pp. 2980–2988, 2017.

[19] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

	Introduction
	Data Generation
	Data Pre-processing
	Data Generation Procedure

	Transformer model
	Audio Encoder
	Context Encoder
	Aggregation Module
	Training
	Few-shot learning
	Prompt Engineering
	Post-Processing

	DCASE Results and Conclusion
	References

