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ABSTRACT

This report presents our work for DCASE 2024 Task 2: first shot un-
supervised anomalous sound detection for machine condition mon-
itoring. This year’s challenge is heightened by the introduction of
additional machine types and the absence of training labels. To
solve these problems, multiple pre-trained models are employed
in the submission, along with a Dual Branch CNN model and
a flow model. The pre-trained models are fine-tuned with Low-
Rank Adaptation (LoRA). Finally, by fusing the systems above, we
achieve the best hmean of 68.38% on the development set.

Index Terms— Anomaly detection, LoRA, pre-trained models,
normalizing flows, sound

1. INTRODUCTION

Anomalous sound detection (ASD) is a crucial task for machine
condition monitoring, which aims to distinguish between normal
and abnormal machine sounds without knowing the pattern of
anomaly in prior. The task 2 series of the DCASE challenges
[1, 2, 3, 4] focus on identifying anomalous sounds from multiple
machine types, while featuring the complexity of real-world indus-
trial environments and the domain shift problem.

This year’s challenge emphasizes the ”first-shot problem under
attribute-available and unavailable conditions”. In reality, the di-
versity of machine types makes it challenging to collect operating
sounds with trainable attribute labels. Therefore, this year’s task
features:

• An updated and expanded set of machine types for evaluation.
• Training without attribute labels for some machine types.

In consideration of these challenges, the submitted systems in-
corporate five distinct single models, where two models are trained
from scratch and the other three models are initialized from pre-
trained models. First of all, a flow model is trained to learn the
distribution of mel features, which has been proved to be robust in
previous challenges [5, 6]. Secondly, since the multi-branch archi-
tecture has also been demonstrated to be effective [7, 8], an im-
proved dual branch convolutaional neural network (CNN) is trained
to extract semantic features of machine audio. Finally, we explore
the use of multiple AudioSet pre-trained models, namely BEATs [9]
and EAT [10]. These models exhibit remarkable capabilities in au-
dio classification and are better suited for the ASD task than the
pre-trained speech models adopted in the previous works [11, 6, 12].
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Low-Rank Adaptaion (LoRA) [13] is employed to efficiently tune
these pre-trained models. Furthermore, we combine BEATs and
EAT into a dual branch scheme in order to leverage the power of
both pre-training and multi-branch architecture.

The four submitted systems are all model ensembles, each of
which roughly contains 360M parameters. We combine the five
single models by model average, score fusion and group fusion,
which will be elaborated in Section 3. As a result, the best system
achieves an overall harmonic mean of 68.38% on the development
set.

The structure of the paper is organized as follows. We will com-
mence by delineating the single models utilized, followed by a con-
cise overview of model ensembles, and conclude with our results on
the development set.

2. MODEL ZOO

This section introduces the five single models developed in the pro-
posed scheme.

2.1. NF-CDEE

As a continuation of our previous work [6], a probabilistic model
named NF-CDEE is developed to learn the distribution of mel fea-
tures. Audio waveforms are converted to log-mel spectrograms
with a window size of 8192, a hop size of 512 and 256 mel bins.
Frequency-wise normalization is independently applied to each mel
bin within the batch, which is implemented by batch normalization
(BN). Since the performance of the flow model degrades greatly for
high dimensional data, we take the mean across the time dimen-
sion and employ the model to learn the distribution of the 256-dim
mel features. The loss function is the sum of the negative log-
likelihoods, which also serves as the anomaly score. The model
is implemented by the Pyro library [14]. An Adam optimizer [15]
with a learning rate of 1e-3 is utilized to train the model, with the
batch size set to 128 and a maximum step of 20,000.

In addition, we find that the NF-CDEE model is more suitable
for grouped machine training than training all machines together.
Therefore, based on the signal characteristics, we divide the ma-
chines into the following four groups across both sets, and a unique
model is trained for each group:

1. Stationary: bearing, fan, ToyCar, 3DPrinter, BrushlessMotor,
ToothBrush, HairDryer, AirCompressor,
2. Non-stationary: ToyTrain, HoveringDrone, ToyCircuit
3. Periodic: gearbox, slider, RoboticArm
4. Aperiodic with impulse: valve, Scanner
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Table 1: Performances of single models on the development set of the DCASE 2024 dataset

Model Total Trainable bearing fan gearbox slider ToyCar ToyTrain valve hmean

NF-CDEE 7.28M 6.27M 56.62 56.42 76.79 76.54 50.16 51.34 54.58 58.72
Dual Branch CNN 2.75M 2.75M 54.71 57.64 67.11 85.83 52.47 60.07 72.23 62.65

BEATs-LoRA 90M 3.73M 68.75 61.85 67.22 70.87 55.43 60.24 68.51 64.26
EAT-LoRA 88M 11.25M 65.24 61.34 71.99 76.39 57.02 57.37 72.79 65.23

Dual Branch BEATs and EAT 180M 14.98M 63.79 62.01 61.87 73.01 62.77 66.32 72.70 65.77

2.2. Dual Branch CNN

The Dual Branch CNN model incorporates two independent
branches dedicated to analyzing the spectrum and spectrogram
of each audio input, enabling examination of both static and dy-
namic semantic features. Inspired by [16], we improve the dual
branch CNN model proposed by Wilkinghoff [7] by integrating self-
attention modules [17] that process the feature map along specific
dimension into both branches. In the spectrum branch, three self-
attention modules are inserted after each convolution layer, which
operate on the frequency, frequency and channel dimension respec-
tively. Conversely, in the spectrogram branch, two self-attention
modules are inserted following the residual blocks and preceding
the max pooling layer, which operate on the frequency and time di-
mension respectively. The self-attention modules in the spectrum
branch incorporate all projection heads but neglect residual connec-
tions, while the self-attention modules in the spectrogram branch
incorporate residual connections but neglect all projection heads.
Figure 1 is the illustration of this neural network model.

Unlike previous approaches that concatenate branch embed-
dings during or after training, we combine both methods, facilitat-
ing three flows of gradient back-propagation in each training iter-
ation. This multi-backpropagation strategy aims to potentially en-
hance the model’s performance and robustness by updating based
on both overall compatibility and the independent contributions of
each branch embedding.

Identical with the work of Wilkinghoff [7], raw audio inputs are
10 seconds long with a sampling rate of 16kHz. STFT is conducted
with a window length of 1024 and a window shift of 512. Hanning
window is used in both DFT and STFT, and only the magnitude of
spectra and spectrograms is used. Temporal mean normalization is
applied to the magnitude spectrograms, but no other data augmen-
tation is applied. Regarding the model, the head numbers of the
self-attention modules are [4,4,2] for the spectrum branch and [2,2]
for the spectrogram branch. During training, the batch size is set
to 64, and the loss function is ArcFace [18], same for general and
branch embeddings. The optimizer is AdamW [19] with a learning
rate of 5e-3, betas [0.9,0.98] and weight decay 1e-5. The scheduler
is a cosine scheduler with a warmup restart step of 10, a cycle step
of 1k and a gradient accumulation of 8.

2.3. BEATs-LoRA

BEATs, which stands for Bidirectional Encoder representation from
Audio Transformers, is a self-supervised learning (SSL) framework
for general audio representation pre-training. The model includes
an acoustic tokenizer and an audio SSL model that are optimized
iteratively. This approach aims to improve the learning of audio
representations by generating discrete labels with rich audio seman-
tics, which in turn enhances the performance of audio classification
tasks. We use the BEATs-iter3 version, which is pre-trained on the

Figure 1: Illustration of Dual Branch CNN. Note that to conduct the
auxiliary task of classification, another linear layer is added at the
back to project the embedding dimension from 256 to the number
of classes.

full training set of the AudioSet dataset and utilizes 90M parame-
ters.

Rather than fully fine-tuning the model, we apply LoRA for
fine-tuning purposes. LoRA introduces parameters to the q and v
matrices and the out projection matrix within the Transformer. The
hyperparameter r is configured to 64. For the v matrix in the lat-
ter half of the Transformer layers, r is increased to 96. Addition-
ally, throughout training, both the pooling module and the terminal
fully-connected layer are rendered trainable to facilitate classifica-
tion tasks.

For the training process, the input features are log-mel spectro-
grams with a frame length of 25ms and a frame shift of 10ms. The
number of mel bins is set to 128. SpecAugment [20] is employed
with a maximum mask length of 80 for both time and frequency
axes. The loss function is ArcFcae [18]. Batch size is set to 8, and
gradient accumulation occurs every 8 steps. The model is trained for
50,000 steps with an initial learning rate set to 1e-4, optimized using
AdamW. Additionally, a CosineAnnealingWarmupRestarts sched-
uler is implemented, with a max learning rate of 5e-3 and a min-
imum learning rate of 1e-5 and 10 steps of warm up steps. Prior
to anomaly detection, SMOTE is also employed to balance distri-
butions between different domains, and the same technique is also
used in the following two pre-trained models.

2.4. EAT-LoRA

EAT is a model designed for audio self-supervised learning, aim-
ing to learn representations from unlabeled audio efficiently. It in-
troduces a unique objective that incorporates global utterance-level
and local frame-level learning, thereby enriching audio comprehen-
sion. Furthermore, EAT adopts a bootstrap self-supervised training
paradigm tailored to the audio domain. We utilize the EAT-base
model pre-trained on AudioSet-2M, which comprises 88M param-
eters.

Similar to the BEATs model, we employ LoRA instead of full
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Table 2: Combination coefficients of four submitted systems

Model Group NF-CDEE Dual Branch CNN BEATs-LoRA EAT-LoRA Dual Branch BEATs and EAT

System 1 Scanner 0.0 0.0 0.5 0.4 0.1
Others 0.0 0.2 0.1 0.3 0.4

System 2 Periodic 0.5 0.0 0.0 0.5 0.0
Others 0.0 0.0 0.5 0.4 0.1

System 3 All 0.0 0.2 0.3 0.2 0.3

System 4 Periodic 0.2 0.1 0.3 0.4 0.0
Others 0.0 0.2 0.3 0.2 0.3

Table 3: Performances of submitted systems on the development set of the DCASE 2024 dataset

Model bearing fan gearbox slider ToyCar ToyTrain valve hmean

System 1 66.09 61.60 71.08 79.75 58.25 65.71 76.43 67.67
System 2 67.87 62.43 77.94 80.92 58.08 64.62 72.84 68.38
System 3 67.94 61.65 71.34 78.51 56.80 65.01 75.78 67.39
System 4 67.94 61.65 76.89 81.25 56.80 65.01 75.78 68.33

fine-tuning during the training process. LoRA parameters are intro-
duced to the q and v matrices of the Transformer layers, as well as
the fully connected layers. The training settings are consistent with
the previous model.

2.5. Dual Branch BEATs and EAT

The Multibranch model is a combination of the two models intro-
duced above. It combines the embeddings extracted from both mod-
els for enhanced performance in classification tasks and anomaly
detection. Throughout the training process, we employ the multi-
backpropagation strategy to balance the influence of each model’s
contributions, where the loss is first back-propagated through each
branch according to their respective weights, and then propagated
through the entire model. This approach ensures that each model’s
contributions are appropriately balanced and integrated into the
overall training procedure. The training settings are consistent with
those used previously.

3. ENSEMBLE

Model ensemble has been proved effective for improving ASD per-
formance and robustness in previous works [21, 11]. We also adopt
ensemble techniques in the submitted systems, namely model aver-
age, score fusion and group fusion, which are applied progressively.

3.1. Model Average

Averaging the parameters of multiple checkpoints is a vital tech-
nique for classification task. In the proposed scheme, we apply
model average to the Dual Branch CNN model introduced in Sec-
tion 2.2, where we average the top 3 checkpoints from a single
run. Meanwhile, model average is not applicable for the NF-CDEE
model and LoRA models, since applying it deprecates the perfor-
mances of these models.

3.2. Score Fusion

Score fusion is a commonly adopted technique in previous chal-
lenges [11, 22] for combining heterogeneous single models into a
powerful ensemble, which is also adopted in the submitted systems.
We first calibrate each single model by normalizing the scores via
mean and standard deviation. The calibrated scores are then linearly
combined into a general score, and the combination coefficients are
obtained by grid search on the development set. However, since the
greedy grid search tends to overfit on the development set resulting
in an imbalance distribution of coefficients, we manually adjust the
coefficients for some systems to improve the generalizability.

3.3. Group Fusion

To further improve the robustness, we introduce group fusion which
applies score fusion in groups, since the trained-from-scratch mod-
els may not scale well on particular machine types. On the one
hand, the NF-CDEE model only showcases consistent excellence
on the periodic group, while the performances on other groups
are severely lagged behind pre-trained models. Therefore, the NF-
CDEE model only contributes to the scores of the periodic group,
while the combination coefficient of the NF-CDEE model on other
groups is set to 0.0. On the other hand, the Dual Branch CNN model
yields a naive score distribution for Scanner, thus it is not applied
on this machine type.

3.4. Submitted Systems

Table 2 presents the combination coefficients of five single models
in four submitted systems. Since three pre-trained models general-
ize well to all machine types, they are considered as base models
and are employed in all submitted models. System 1 combines base
models with the Dual Branch CNN model on all machine types ex-
cept Scanner. System 2 combines base models with NF-CDEE on
the periodic group. System 3 combines all available models with
the optimal coefficients. System 4 also utilizes all available mod-
els, but only applies NF-CDEE on the periodic group and slightly
increases the coefficient of BEATs-LoRA.
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4. EXPERIMENT

The Receiver Operating Characteristic (ROC) Curve (AUC) and
partial AUC (pAUC) are calculated in accordance with the chal-
lenge rule, and we report the harmonic mean of AUCs and pAUC
for each machine type and the overall harmonic mean across ma-
chine types.

Table 1 presents the performances of five single models. Three
pre-trained models demonstrate superior performances than two
train-from-scratch models, where the Dual Branch BEATs and EAT
model showcase the best detection results. The NF-CDEE model
only excels on gearbox and slider, thus it is only applied on the
periodic group in group fusion.

Table 3 presents the performances of four submitted systems,
where system 2 achieves the best detection result of 68.38%.

5. CONCLUSION

This paper depicted the THUEE system for the ASD task, where
we employed two train-from-scratch models and three pre-trained
models, and ensembled them via model average, score fusion and
group fusion. The best system achieved 68.38% on the development
set of the DCASE 2024 dataset.
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