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ABSTRACT

In this technical report, we describe our submission to DCASE2024
Challenge Task6 (Automated Audio Captioning) and Task8
(Language-based Audio Retrieval). We develop our approach build-
ing upon the EnCLAP audio captioning framework and optimizing
it for Task6 of the challenge. Notably, we outline the changes in
the underlying components and the incorporation of the reranking
process. Additionally, we submit a supplementary retriever model,
a byproduct of our modified framework, to Task8. Our proposed
systems achieve FENSE score of 0.542 on Task6 and mAP@10
score of 0.386 on Task8, significantly outperforming the baseline
models.

Index Terms— Automated audio captioning, language-based
audio retrieval, neural audio codec, audio-text joint embedding

1. INTRODUCTION

Automated audio captioning (AAC) refers to the cross-modal transla-
tion task of transcribing audio signals that contain sound events into
concise and meaningful natural language descriptions [1]. Despite
the recent success of deep learning in many traditional tasks, AAC
remains a particularly challenging task, with substantial performance
discrepancy between human and machine.

One significant contributor of the performance gap can be at-
tributed to the intrinsic complexity of the task. Distinguishing be-
tween various sound events, especially between similar and ambigu-
ous ones, requires extensive real-world knowledge. To mitigate
this challenge, prior studies have incorporated additional real-world
acoustic knowledge by employing pretrained audio encoders trained
on audio classification tasks [2, 3, 4].

The scarcity of high-quality data poses an additional challenge in
audio captioning. Notably, AudioCaps [5] and Clotho [6], two most
widely used datasets for audio captioning, contain approximately
50K and 20K captions, respectively, while COCO captions [7], a
widely used dataset for image captioning, has over 414K captions in
its training set. Although Mei et al. [8] proposed WavCaps, a large-
scale audio captioning dataset comparable in scale to COCO captions,
it is important to note that WavCaps is a weakly-labeled dataset and
cannot be considered a direct substitute for a high-quality dataset. To
address this issue, previous works [9, 10, 11] have leveraged the text
generation capabilities of pretrained language models like GPT-2
[12] and BART [13] to improve the semantic quality of the captions

under data-scare scenarios. Additionally, some studies have also
incorporated auxiliary loss terms, including keyword prediction loss
[14] or sentence embedding loss [15], to provide additional training
signal and improve the training procedure.

Expanding upon previous line of works, Kim et al. [16] pro-
posed the EnCLAP framework, which integrates a set of pretrained
models with an auxiliary training task. Notably, EnCLAP utilizes
two acoustic feature encoders, EnCodec [17] and CLAP [18], to gen-
erate timestep-level and sequence-level representation, of the input
audio sequence, respectively. For caption decoder, the framework
employs a pretrained BART model [13]. Furthermore, Kim et al.
also introduced masked codec modeling (MCM), an auxiliary task
designed to enhance the acoustic awareness of the caption decoder.
The combination of these approaches allowed EnCLAP to achieve
state-of-the-art performance on the AudioCaps dataset.

In this work, we adapt the EnCLAP framework to tackle
DCASE2024 Challenge. We aim to optimize and enhance the per-
formance of each component within the EnCLAP framework, while
adhering to the challenge’s rules and regulations. Specifically, we in-
vestigate alternative models for the EnCodec and CLAP components
and adopt a sampling and reranking procedure to further improve the
quality of the generated captions. We submit our resulting system to
Task6 and Task8 of the challenge.

2. METHOD

2.1. Neural Audio Codec

Neural audio codecs are autoencoder models designed to encode
waveforms into sequences of discrete codes. Recent advancements
[19, 17, 20] typically employ residual vector quantization (RVQ) for
compression, utilizing multiple codebooks to quantize the residu-
als of preceding codebooks. Ultimately, the input waveforms are
transformed into a set of parallel discrete code sequences, each of
which is associated with a unique codebook. Neural audio codecs
have demonstrated success as the acoustic representation format in
generative audio models [21, 22, 23].

In the context of audio captioning, EnCLAP [16] employs the
neural audio codec, specifically EnCodec [17], to represent the in-
put waveform at the timestep level. This approach is based on the
assumption that pretrained language models are better suited to pro-
cess discrete inputs compared to continuous ones. In this work,
we replace EnCodec in the original EnCLAP framework with De-
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Table 1: Results on Task8 Language-Based Audio Retrieval on Clotho evaluation split. CL, AC, and WC refer to Clotho, AudioCaps, and
WavCaps, respectively.

Model Audio Encoder Text Encoder mAP@10 R@1 R@5 R@10
Baseline CNN14 all-mpnet-base-v2 0.222 0.130 0.343 0.480

Pretrained on CL + AC + WC
Pretrain 1 CNext bge-base 0.334 0.222 0.485 0.619
Pretrain 2 CNext bert-base 0.325 0.208 0.479 0.618
Pretrain 3 CNext roberta-base 0.326 0.214 0.474 0.614
Pretrain 4 CNext bge-large 0.339 0.219 0.502 0.633
Pretrain 5 CNext bert-large 0.339 0.220 0.500 0.635
Pretrain 6 CNext roberta-large 0.342 0.228 0.492 0.632

Finetuned on CL
Finetune 1 CNext bge-base 0.356 0.235 0.522 0.649
Finetune 2 CNext bert-base 0.356 0.235 0.520 0.654
Finetune 3 CNext roberta-base 0.365 0.250 0.523 0.659
Finetune 4 CNext bge-large 0.369 0.249 0.530 0.665
Finetune 5 CNext bert-large 0.367 0.247 0.526 0.663
Finetune 6 CNext roberta-large 0.375 0.256 0.535 0.669
Ensemble 1 0.385 0.265 0.547 0.676
Ensemble 2 0.386 0.267 0.547 0.680
Ensemble 3 0.378 0.257 0.543 0.676

script Audio Codec (DAC) [20], as DAC has demonstrated superior
performance in audio compression, as well as downstream tasks
[20, 24].

2.2. Audio-Text Joint Embedding

The original EnCLAP employs CLAP [18] embeddings as the
sequence-level acoustic representation of the input audio. How-
ever, due to potential overlap between the training dataset of CLAP
and the evaluation dataset, we substitute CLAP with an alternative
model. Specifically, we utilize the audio encoder of the baseline
model of the challenge, hereinafter referred to as CNext [25], which
was trained on the AudioSet [26] dataset for the audio classification
task. In our preliminary experiments, we observed that the variant of
CNext finetuned using the audio-text retrieval task exhibits superior
performance. Therefore, we adopt this variant in our work.

2.3. Generation and Reranking

Previous works, including EnCLAP [16], have utilized beam search
decoding for caption generation. However, Wu et al. [4] showed
that the sampling-then-reranking approach yields more diverse and
informative captions. Therefore, we adopt the approach proposed by
Wu et al. [4], where we generate a set of candidate captions through
nucleus sampling and select the most suitable one via reranking.

Our candidate selection procedure is a two-stage process. First,
we use the FENSE fluency error detector [27] to filter captions con-
taining fluency errors. We then rank the remaining candidates based
on the weighted sum of two reranking scores: encoder reranking and
decoder reranking. The encoder reranking score is cosine similar-
ity score between the input audio representation and the generated
caption representation computed using the retriever model described
in Section 2.2. For the decoder reranking score, we use the log-
likelihood of the generated caption given the input audio.

3. EXPERIMENT

We assess the performance of our modified EnCLAP model on Task6
of DCASE2024 Challenge and report the results. Additionally, we
evaluate the retriever model described in Section 2.2 on Task8 of the
challenge.

3.1. Setup

Dataset. In our experiment, we adopt a two-stage training process,
where we pretrain on a larger dataset and subsequently finetune on
a smaller dataset. The pretraining dataset comprises a combination
of AudioCaps [5], WavCaps [8], Clotho [6], and Clotho-ChatGPT-
Mixup [4]. Conversely, the finetuning dataset consists solely of the
Clotho dataset. To comply with the challenge regulations, we exclude
any potential overlapping data from Freesound in the WavCaps
dataset. Additionally, we only use audio clips with durations between
1 and 30 seconds from the WavCaps dataset. For Clotho, we utilize
only the training split of the dataset.
Model Configuration. From the original EnCLAP model configura-
tion, we experiment only with the EnCLAP-large setup to maximize
the performance of the final model. We use a variant of the DAC
model that transforms a 24kHz acoustic waveform to 75Hz code
sequences, with 32 codes per timeframe and codebook size of 1024.
For the retriever model, we initialize the audio encoder with CNext-
tiny by Pelligrini et al. [25]. For the text encoder, we experiment
with 6 different pretrained language models: BGE-base [28], BERT-
base [29], RoBERTa-base [30], BGE-large [28], BERT-large [29],
RoBERTa-large [30]. For the sequence-level feature encoder, we
choose Pretrain 1 version listed in Table 1. Note that we resample
the input audio to appropriate sample rates before processing it with
feature encoders.
Generation. We use nucleus sampling with a probability threshold
of 0.95 and a temperature of 0.5 to generate 30 candidates. We
rank the candidates by the weighted sum of the encoder reranking
score and the decoder reranking score using weights of 0.7 and 0.3,
respectively.
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Table 2: Results on Task6 Automated Audio Captioning on Clotho evaluation split. For EnCLAP-large, we report the scores using the official
clotho-finetune-large checkpoint, which was pretrained on the AudioCaps dataset and finetuned on the Clotho dataset.

Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL Vocabulary FENSE
Baseline 0.1897 0.4619 0.1335 0.2977 0.2962 551 0.5040

EnCLAP-large 0.1864 0.4641 0.1336 0.2989 0.2971 592 0.5116
Submission1 0.1989 0.4826 0.1483 0.3155 0.3155 840 0.5386
Submission2 0.1955 0.4775 0.1423 0.3099 0.3099 865 0.5419
Submission3 0.2003 0.4780 0.1488 0.3134 0.3134 825 0.5393
Submission4 0.1994 0.4778 0.1488 0.3133 0.3133 815 0.5420

3.2. Training

Language-Based Audio Retrieval. We train our retriever models
using the m-LTM framework [31], a learning-to-match framework
for the minibatch setting, designed to minimize the modality gap be-
tween audio and text embedding in audio-text retrieval tasks. During
the pretraining phase, we use a mixed dataset comprising AudioCaps
[5], WavCaps [8], and Clotho [6].
Automated Audio Captioning. For audio caption training, we
follow the original EnCLAP setup and use a combination of two
tasks: captioning task and MCM task. MCM is an auxiliary training
task which involves masking a part of the input codec sequence and
predicting it, analogous to the masked language modeling (MLM)
approach. Note that we omit the MCM task during the finetuning
stage. During the pretraining stage, we use a combined dataset of
AudioCaps [5], WavCaps [8], and Clotho-ChatGPT-Mixup [4].

3.3. Results

Language-based Audio Retrieval. We present the results of our
evaluation on Task8 in Table 1. Our models significantly outperform
the baseline. We also find that ensembling models with different
encoders yields additional score improvements. For the challenge,
we submit the following four models:

1. Finetune 1: CNext audio encoder and RoBERTa-large text
encoder

2. Ensemble 1: An ensemble of the top 3 fine-tuned models:
Finetune 4, 5, 6

3. Ensemble 2: An ensemble of all fine-tuned models

4. Ensemble 3: An ensemble of all pre-trained and fine-tuned
models

Automated Audio Captioning. We summarize the results of our
evaluation on Task6 in Table 2. Our models surpass both the
DCASE2024 baseline and EnCLAP-large by a wide margin. The
details of our submissions are as follows:

1. Submission 1: A modified EnCLAP model with DAC and
CNext audio-text joint embedding

2. Submission 2: An average soup [32] model of 5 modified
EnCLAP models

3. Submission 3: An ensemble of 7 modified EnCLAP models

4. Submission 4: An ensemble of 7 modified EnCLAP models
and 2 soup models

4. CONCLUSION

This report outlines our approach to DCASE2024 Challenge. We
investigate the application of the recently introduced m-LTM loss
to language-based text retrieval. For automated audio captioning,
we attempt to optimize and improve the the EnCLAP framework
by introducing new backbone models, that is, specifically by replac-
ing EnCodec with DAC and CLAP with the audio encoder from
the aforementioned retriever. We also integrate a sampling-and-
reranking scheme to the generation procedure. In our future work,
we hope to investigate the reciprocal effects of captioning and re-
trieval tasks.
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