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ABSTRACT 

DCASE 2024 challenge Task2 is about first-shot unsupervised 

anomalous sound detection. To solve this problem, we employed 

self-supervised learning with various methods to enable the model 

to achieve general and robust performance on diverse machine 

sounds with limited information. The methods include combining 

embeddings from pre-trained models based on different audio rep-

resentations, attentive statistics pooling, and a memory bank. By 

applying these methods, we successfully achieved a higher score 

on development dataset compared to the baseline.  

Index Terms— Self-supervised learning, first-shot, un-

supervised anomalous sound detection 

1. INTRODUCTION 

The task of anomalous sound detection (ASD) involves determin-

ing whether the sounds produced by a target machine are normal 

or anomaly. Since its inception, DCASE Challenge Task 2 has fo-

cused on addressing the task of ASD. Each year, the task has been 

adapted to better reflect real-world challenges and constraints. The 

focus of this year’s task [1] remains on the first-shot problem with 

key modifications from the task of last year to reflect real-world 

constraints more, which are as follows:  

 

⚫ Tuning hyperparameters using test data is often impractical 

due to the potential for encountering completely new machine 

types or insufficient test data. To address this, the develop-

ment and evaluation datasets contain completely different 

machine types.  

⚫ Practical limitations may result in only a few machines per 

type, unlike previous tasks where multiple sections from dif-

ferent machines were available. Hence, only one section per 

machine type is provided in this year’s task.  

⚫ In real-world scenarios, information on machine conditions 

or noise types may not always be available. To simulate this, 

additional attribute information is hidden for some machine 

types. 

1Transfer learning using pre-trained models has achieved sig-

nificant success in various fields, such as BERT [2] and GPT [3]. 

Inspired by this, we decided to leverage pre-trained models in our 

approach. Additionally, we hypothesized that employing pre-
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trained models with different audio representation methods simul-

taneously would enable robust learning for various machine 

sounds. Therefore, we devised a self-supervised learning frame-

work that combines embeddings from models trained with wave-

forms and spectrograms as inputs to classify machine sounds. Fur-

thermore, to achieve generalized performance on machines with-

out attribute information, which is a key modification in this year's 

task, we divided our framework into two sub-systems. One sub-

system is designed to classify 16 types of machines, while the 

other sub-system classifies combined classes of machine types and 

attribute information. We obtained the final embedding for each 

audio sample by taking a weighted mean of the embeddings pro-

duced by these two sub-systems. Finally, in the target domain, 

only a very limited number of training samples were allowed. 

Therefore, instead of using them for training, we introduced the 

concept of a memory bank. At the final stage of testing, we incor-

porated an additional process of comparing cosine distances with 

all samples from the target domain. As a result, we were able to 

observe a better performance on development dataset compared to 

the baseline [4]. 

2. PRE-TRAINED MODELS 

In this section, we briefly introduce the pre-trained models we used 

for different audio representations. 

 

2.1. Wav2Vec2.0 

 

Wav2vec2.0 [5], developed by Facebook AI, demonstrates a sig-

nificant advancement in speech recognition by leveraging self-su-

pervised learning to utilize vast amounts of unlabeled audio data, 

thereby reducing dependence on labeled datasets. Utilizing a trans-

former-based architecture, the model captures long-range depend-

encies in audio sequences, and its quantization of latent speech 

representations into discrete units enhances speech modeling. 

Achieving state-of-the-art performance on benchmark datasets 

such as LibriSpeech [6], Wav2vec2.0 demonstrates superior accu-

racy and efficient fine-tuning with minimal labeled data.  

 

2.2. AST 

 

Audio Spectrogram Transformer (AST) [7], developed by MIT, 

introduces a novel approach to audio processing by applying a 

Transformer architecture to audio spectrograms, traditionally used 

in natural language processing, such as BERT. By converting 
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audio signals into 2-dimensional time-frequency representations, 

AST leverages the powerful self-attention mechanism of Trans-

formers to capture complex temporal and spectral dependencies in 

audio data. This method allows for effective modeling of audio 

signals without relying on convolutional neural networks (CNNs). 

AST achieves state-of-the-art performance on various audio clas-

sification benchmarks, such as AudioSet [8], by demonstrating su-

perior accuracy and robustness.  

 

3. APPROACHES 

 

3.1. Speed perturbation 

 

Speed perturbation [9] is a data augmentation technique widely 

used in speech processing to improve model robustness and per-

formance. It involves altering the speed of audio recordings with-

out changing their pitch, creating variations of the original audio. 

This method generates additional training data by speeding up or 

slowing down the audio, effectively simulating different speaking 

rates. Speed perturbation helps models generalize better by expos-

ing them to a wider range of acoustic conditions, thereby enhanc-

ing their ability to handle diverse and real-world scenarios. 

 

3.2. Attentive statistics pooling 

 

Attentive Statistics Pooling [10] is an advanced pooling technique 

used in neural network-based audio processing, particularly in 

speaker recognition systems. It employs an attention mechanism 

to assign weights to different frame-level features, emphasizing 

the most relevant segments of the audio for the task. This approach 

computes weighted mean and standard deviation, capturing both 

the central tendency and variability of the important features. In-

corporating standard deviation is crucial as it provides information 

about the dispersion and variability of the features, enabling the 

model to differentiate between speakers more effectively. By dy-

namically focusing on the most informative parts of the audio sig-

nal, Attentive Statistics Pooling enhances the discriminative power 

and robustness of the feature representation, leading to improved 

performance in noisy and variable conditions.  

 

3.3. Combine embeddings 

 

To combine the representations from the two pre-trained models 

mentioned in Section 2, we utilized a Convolutional Neural Net-

work (CNN). By feeding the outputs of these models into a CNN, 

we can effectively capture and integrate the intricate patterns and 

features from both sets of representations.  

The Wav2vec2.0 model incorporates an attentive statistics 

pooling layer that compresses the output into a tensor of shape 

(batch size, 2, hidden size). Concurrently, for the AST model, the 

CLS token is utilized. The embeddings from both models are con-

catenated along the second dimension, resulting in a combined em-

bedding. This concatenated embedding is then passed through a 

CNN to further compress it into a single unified embedding. This 

approach leverages the strengths of both Wav2vec2.0 and AST 

models, facilitating efficient and robust feature extraction for sub-

sequent tasks. 

 

3.4. Classification with pre-trained models 

 

We employed ArcFace [11] to learn embeddings that effectively 

represent the input data. ArcFace is used for classification tasks, 

enabling the learning of embeddings with clear inter-class separa-

bility and intra-class compactness. The function is defined as fol-

lows: 

 

𝐿 = −
1

𝑁
∑

log 𝑒
𝑠(cos(𝜃𝑦𝑖

+𝑚))

𝑒
𝑠(cos(𝜃𝑦𝑖

+𝑚))
+ ∑ 𝑒𝑠 cos(𝜃𝑗)𝑁

𝑗=1,𝑗≠𝑦𝑖

𝑁

𝑖=1
, (1) 

where 𝑁 denotes the total number of samples, 𝑠 is the scaling fac-

tor, 𝑚 is the angular margin, 𝜃𝑦𝑖
 represents the angle between the 

sample 𝑖 and its corresponding class 𝑦𝑖, and 𝜃𝑗  represents the an-

gle between the sample 𝑖 and any other class 𝑗. This function aims 

to maximize the softmax value for the correct class, thereby mini-

mizing the angle between the sample and the class center. Con-

versely, it drives the softmax values for the incorrect classes to-

wards zero, thereby maximizing the angle between the sample and 

the centers of the other classes. 

Once the model becomes saturated through the series of pro-

cesses mentioned above, embeddings are extracted from the net-

work for the training samples. These embeddings are then parti-

tioned into 16 clusters using K-means clustering, with each clus-

ter's center representing the embedding of a respective machine. 

Subsequently, for a test sample, the minimum cosine distance to 

any of the cluster centers is used as the anomaly score. The overall 

train and test process is shown in figure 1. 

 

3.5. Memory bank 

The concept of a memory bank is utilized to enhance the model's 

performance in scenarios with limited training samples in the tar-

get domain. A memory bank serves as a repository for storing 

high-quality feature representations of the target domain samples. 

During the final stage of testing, the model compares the test 

Figure 1: Overview of the self-supervised training network (left) 

and the testing phase based on K-means clustering and memory 

bank (right). During training, waveform and spectrogram of an 

audio sample are trained with two different pre-trained model, 

which are then combined through a convolutional layer. During 

testing, all training samples in source domain are used to deter-

mine cluster centers. Additionally, all target domain samples are 

stored in the memory bank, and for each test sample, the smallest 

cosine distance between the test sample and either the cluster 

centers or the memory bank entries is selected as the final anom-

aly score.  
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samples with the stored representations in the memory bank using 

cosine distance. This approach allows for a more comprehensive 

and discriminative comparison by leveraging the entire set of tar-

get domain samples, thus mitigating the challenges posed by the 

scarcity of training data. The memory bank technique improves 

the model's ability to generalize and recognize patterns in the tar-

get domain by providing a richer context and additional reference 

points, ultimately leading to better performance and accuracy in 

real-world applications. 

4. RESULTS 

In Table 1, the results of each sub-system of our framework, as 

well as the ensemble results, can be observed. The experimental 

results indicate that performing separate classifications for the  

machine and for the combined class of machine and attribute, and 

then ensembling these results, improved the performance of anom-

alous sound detection when attribute information was limited. 

5. CONCLUSIONS 

In this task, we attempted various approaches to solve the ASD 

problem, reflecting numerous practical constraints. By combining 

information learned from different audio representations, we 

aimed to train a model that generalized well to various machine 

sounds. For target domains with a small sample size, we maxim-

ized the use of our network through a memory bank to achieve 

robust results. Additionally, by employing two sub-systems, we 

sought to achieve generalized performance even in situations 

where attribute information was limited. 
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System Index Weight All Hmean 
Machines 

ToyCar ToyTrain Bearing Fan Gearbox Slider Valve 

Sub-system 1 N/A 53.79 50.82 50.74 59.55 51.60 51.25 54.63 57.63 

Sub-system 2 N/A 55.25 47.32 50.98 54.22 55.64 58.85 68.70 55.77 

1 0.62 56.68 48.34 53.99 56.79 57.40 56.86 65.60 58.44 

2 0.64 56.60 48.46 53.99 56.20 57.37 56.50 65.54 58.27 

3 0.65 56.64 48.43 54.02 55.89 57.49 56.61 65.77 58.13 

4 0.67 56.66 48.52 54.15 55.50 57.53 56.68 66.06 58.13 

Table 1: Results of sub-systems as well as the final submitted systems. Sub-system 1 refers to a classification system for 16 machine types, 

while sub-system 2 classifies combined classes of machines and their attributes. If the weight is denoted as 𝑤, then the system calculates 

the embedding using the formula (1 − 𝑤) × sub-system 1 + 𝑤 × sub-system 2. This weighted mean allows the model to balance the con-

tributions of both sub-systems to produce a final embedding that incorporates both machine types and their associated attributes. 


