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ABSTRACT

Automatic Audio Captioning (AAC) is a process that transforms
audio signals into descriptive narratives. This paper introduces an
innovative automated audio captioning model developed for the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
2024 Challenge Task 6A. The model architecture presented here is
meticulously designed to adeptly manage the intricacies of AAC
tasks. Additionally, this project introduces a novel data enhance-
ment technique, which, with minimal model adjustments, signifi-
cantly boosts performance. Exclusively trained and fine-tuned on
the Clotho dataset, this project achieved a final SPIDEr-FL score of
0.3318, demonstrating its effectiveness.

Index Terms— Automatic Audio Captioning, Semantics, Data
augmentation

1. INTRODUCTION

Automated Audio Captioning (AAC) is a technology that aims to
convert the audio content into textual descriptions [1]. It is used to
automatically generate captions or descriptions for audio clips. One
of the most important applications of AAC is to provide an accessi-
ble environment for hearing impaired people or deaf-mute people.
With AAC, audio content (e.g. ambient sounds, noise, music) can
be converted into a textual description so that those who cannot hear
audio elements can better understand and perceive their surround-
ings. This provides a more inclusive experience for everyone.

The complexity of AAC stems from the temporal dynamics and
spectral variations inherent in audio data, necessitating advanced
feature extraction methodologies. Early AAC systems employed
Mel-frequency cepstral coefficients (MFCCs) [2] and Recurrent
Neural Networks (RNNs) [3], yet they fell short in capturing the
full semantic spectrum of audio. The current landscape of AAC is
marked by end-to-end models that seamlessly integrate audio fea-
ture extraction with sequence generation mechanisms. These mod-
els adeptly capture both the semantic depth and temporal nuances
of audio, culminating in captions that are not only accurate but also
descriptively rich. In recent years, there has been a surge of inno-
vations related to Audio-Aided Captioning (AAC). Wu et al inno-
vatively leveraged CHATGPT to assist in generating training sam-
ples [4]. Komatsu et al employed audio difference learning to en-
able the model to better understand differences between audio clips
[5]. Ghosh et al proposed Retrieval-Augmented Audio Captioning,
which utilizes captions retrieved from a database similar to the in-
put audio to enhance performance [6]. Deshmukh et al introduced
an approach to train AAC systems solely using text [7]. Sridhar et
al addressed the issues of hallucination and large memory footprint
[8]. In terms of model architectures, Xiao et al. presented GraphAC,
a graph attention module integrated into the encoder for feature rep-
resentation [9]. Eren et al utilized bi-directional Gated Recurrent

Units (BiGRU) to extract subjects and verbs from captions in the
dataset to obtain semantic embeddings and improve model perfor-
mance [10]. Moon et al combined LLaMAv2 to introduce AnyMAL
- a multi-modal language model [11]. Moreover, Kim et al and Mei
et al contributed a large-scale dataset AudioCaps [12] with 49K au-
dio clips and a large-scale dataset WavCaps [13] with 403K audio
clips, respectively.

In current mainstream audio feature extractors such as PANNs
[14], EfficientAT [15], and Wav2Vec [16], they primarily obtain au-
dio features solely from the audio signal. Since audio feature ex-
tractors tend to focus on capturing low-level acoustic characteristics
like spectral content, temporal dynamics, and rhythm, these features
may not directly encode the semantic meaning or context of the au-
dio, limiting their adaptability to AAC task. In contrast, in the com-
puter vision domain, the Q-Former in BLIP2 [17] aims to bridge the
gap between a frozen visual model (e.g., ViT [18]) and a large lan-
guage model, enabling the extraction of visual representations from
images that are most relevant to text and ensuring that these repre-
sentations can be interpreted by large language models. This pro-
vides valuable inspiration for our project. Regarding data augmen-
tation techniques, while the application of Mixup [19] is straight-
forward, it may not yield significant benefits in certain datasets or
tasks that already possess sufficient diversity. Additionally, when
mixing two samples, an improper mixing ratio could result in gen-
erated samples containing a significant amount of non-informative
elements that differ greatly from real samples, potentially negatively
impacting model training. On the other hand, SpecAugment [20],
which directly operates on spectrograms, may not be directly appli-
cable to other types of audio features or representations.

In response to the issues and limitations raised above, the con-
tributions of this project are as follows:

1. This project introduce the Semantic encoder. A model that
are specifically designed to understand and generate seman-
tic representations. It is a 6-layer self-attentional Trans-
former with an additional two-dimensional learnable matrix.
For more accurate semantic representation, features are po-
sitional enhanced at each layer. After that, the output of the
Audio Encoder and the Semantic encoder will be concate-
nated together at the last dimension. Finally, the new fea-
tures are transformed by the projection layer and learned by
the decoder.

2. This paper also introduces an innovative data augmentation
approach that integrates a novel type of noise – spectro-
graphic noise – to significantly enhance performance in AAC
tasks. This technique not only accounts for the temporal
and spectral characteristics of audio but also bolsters the lan-
guage model’s understanding of semantic content by com-
bining spectrograms with the encoder’s output. This inte-
gration allows the model to more accurately capture critical
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Figure 1: Model Flow

events and scene transitions within the audio, leading to the
generation of more precise and descriptive captions.

This paper is organized as follows. In the first section, the sys-
tem architecture of the model framework is presented, which is di-
vided into three parts: audio encoder, semantic encoder, and de-
coder. The second part of the paper introduces the new approach
to data augmentation. Section Three (Experiments) describes the
experimental setup, datasets used, and evaluation metrics in detail.
Finally, in the conclusion section, the main findings and contribu-
tions of this paper are summarized.

2. SYSTEM STRUCTURE

In this project, an frozen audio feature extractor is applied to fil-
ter out useful information, while a semantic enhancement encoder
is used introduced for extracting semantic information from audio
features. Finally, a language model is used to predict and optimize
the probability distribution of word sequences.

h = AFEθe(x) (1)

Where θe are the model parameters of the audio feature extrac-
tor (AFE). After getting audio feature h, the semantic enhancement
encoder (SEE) extracts semantic information from the concatena-
tion of h and the learnable matrix l at the last dimension.

s = SEEθs([h, l]) (2)

Where θs are the model parameters of the semantic enhance-
ment encoder (SEE). Finally, a language model (decoder) generates
sentences with the combination of h and s.

p(wt|[h, s], w0, ..., wt−1) = DECθd([h, s], w0, ..., wt−1) (3)

Where θd are the model parameters of the decoder (DEC). [h, s]
is the concatenation of h and the semantic matrix s.

Training steps of the whole model can be divided as two parts.
First step is to training the semantic enhancement encoder without
a deocder. This step only facilitates it to analyze and understand
the semantic information in the audio. Then both the audio feature
extractor and the semantic enhancement encoder are frozen to train
the decoder. This step is to make the output sentences more fluent
and stable.

2.1. Audio feature extractor

In this project, the computer vision architecture ConvNeXt (Tiny)
[21] trained on AudioSet and finetuned on AudioCaps is adopted
to perform audio feature extraction. ConvNeXt [22] is a series of
pure convolutional neural network models that, through modernized
design improvements, demonstrate accuracy and scalability com-
parable to Transformer models. ConvNeXt (Tiny) is a compact
variant of the ConvNeXt architecture designed to offer a balance
between performance and computational efficiency. It features a
streamlined version of the hierarchical vision transformer structure,
with a reduced number of layers and channels compared to larger
ConvNeXt models. The Tiny model maintains the core design prin-
ciples, such as depth-wise separable convolutions for feature extrac-
tion and cross-attention mechanisms that allow for efficient model-
ing of relationships between different parts of the input data. De-
spite its smaller size, ConvNeXt (Tiny) retains the ability to capture
complex patterns and produce high-quality feature representations,
making it suitable for applications where computational resources
are limited but high accuracy is still required.

2.2. Semantic Enhancement Encoder

The semantic enhancement encoder plays a crucial role in com-
bining the outputs of the Audio Encoder with additional learnable
features, resulting in a matrix that captures both the semantic and
temporal aspects of the audio. This component is essential for
representing the semantic information of the audio, which is not
fully captured by the Audio Encoder alone. The Semantic encoder
is based on a self-attention Transformer [23] but incorporates one
significant improvement: the addition of learnable embeddings for
each batch. This learnable matrix is specifically crafted to abstract
and capture the salient features of ambient noise, aiming to facili-
tate the encoder in deriving audio representations that are inherently
pertinent to the textual context. Additionally, this representation
is structured in a manner that renders it comprehensible and inter-
pretable by large-scale language models, thus enhancing the overall
intelligibility and explainability of the system.

This design is inspired by Querying Former in BLIP-2. But
different from Querying Former, Querying Former uses the same
query set for the extraction of visual features, which Bridges the
information bottleneck between feature extractor and LLM. In this
project, the audio features are transformed into the feature space
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with the help of the learnable matrix, which makes up for the differ-
ence between the audio space and the text space, so that the model
can learn the audio representation most relevant to the text.

Additionally, inspiring by the work from P-Transformer [24],
the hidden state of Semantic encoder is added with position em-
bedding at each layer. This approach aims to solve the problem of
position information weakening or vanishing as it reaches the bot-
tom layers of the encoder. By enhancing the location information,
the model is able to better understand the structure and order of the
source audio, thus generating more grammatical and semantic text
features.

Attention = softmax(
(Q′ + P )(K′ + P )T√

dk
)(V ′) (4)

Where P ∈ R1×dk is the learnable absolute position embed-
dings. Q′ is the concatenation of [Q, l], which means the con-
catenation of the query Q ∈ Rb×t×dk and the learnable matrix
l ∈ R1×t×dk along the last dimension. b represents the batch size,
t is the sequence length of audio features, dK is the hidden size.
Similarly, K′ is the concatenation of [K, l], and V ′ is the concate-
nation of [V, l]. K and V represent the key and value in the attention
mechanism, respectively.

Before learning semantic features, the model needs to interpo-
late the audio features into a specific shape in order to concatenate
it with the learnable matrix. In this project, a shape of (94, 768)
is chosen for both audio features and the learnable matrix, where
94 is the sequence length and 768 is the hidden size, as it is much
closer to the average shape of audio encoder outputs. The seman-
tic enhancement encoder is then trained with the help of a strong
and powerful word embedding model - BGE [25]. By utilizing in-
foNCE [26] loss, the semantic enhancement encoder can learn as
much excellent embedding as possible form BGE.

The InfoNCE loss for a single instance can be formulated as
follows:

L = −
∑N

i=1 log(
exp(

qi·yi+
τ

)∑N
j=1 exp(

qi·yj−
τ

)
) (5)

where N is the batch size, q (query) refers to the outputs of
semantic enhancement encoder, yi+ is the positive example (target)
associated with the i − th input data, and yj− the representations
of all the negative examples, τ is the temperature parameter. For
Clotho [27] dataset an audio has five corresponding captions, so the
loss function can be written as:

Lt =
1

T

∑T
i=1 L(q, yi+, y−) (6)

where T is 5 in Clotho dataset.
Also, the output of Semantic encoder are gather with corre-

sponding captions in cross entropy loss as below. This helps the Se-
mantic encoder represent the semantics of the audio itself as much
as possible.

Lce = −
∑M

c=1ylog(p) (7)

where M is the total number of classes (tokens), y is a binary
indicator (0 or 1) of whether the class is the correct classification
for observation. p is the predicted probability that observation is of
the class.

As a result, the total loss is a simple combination of these two
losses.

Lfinal = Lt + Lce (8)

2.3. Decoder

The Decoder (language model) is a simple 6 layers GPT [28]. This
project has conducted a comparative analysis and concluded that
the significance of the language model is somewhat diminished in
comparison to the Audio Encoder within the given framework. It is
suggested that the framework design should commence with a mod-
est number of parameters, which can then be incrementally scaled
to an optimal range. The project has also evaluated and ranked the
impact of several pivotal elements within a transformer-based de-
coder architecture.

The first and foremost influential factor is the decoder’s hidden
size. The magnitude of the hidden size is directly proportional to the
model’s complexity. An increased hidden size equates to a larger
number of parameters, which in turn raises the model’s complexity.
This allows the model to capture more intricate patterns and rela-
tionships. However, it also demands more computational resources
and extends the training duration. Within an optimal range, aug-
menting the hidden size can enhance the model’s performance, as it
enables the model to learn a more nuanced representation that bet-
ter encapsulates the input sequence’s information. Nonetheless, the
performance gain is not linear, and the improvement may plateau or
even diminish as the hidden size continues to grow. In this project,
simply doubling the baseline decoder’s hidden size from 256 to 512
resulted in a 3.5% performance increase, and further scaling to 768
yielded an additional 2% improvement. However, extending the
model to a hidden size of 1024 began to exhibit diminishing re-
turns. This is attributed to the model’s increased sensitivity to the
specific nuances of the training data, which can impede its ability to
generalize to new, unseen data.

The second critical element is the number of attention heads
within the multi-head attention mechanism. This parameter dic-
tates the number of parallel attention distributions the model uti-
lizes when processing the input sequence. An insufficient number
of heads may fail to adequately capture the diverse features and
patterns present in the input. Given that AAC task and evaluation
metrics often emphasize the diversity and originality of text, it is
advisable to moderately increase the number of heads. However,
an excessive number of heads could escalate computational com-
plexity and potentially lead to overfitting, a risk that is particularly
pronounced with limited datasets.

Lastly, the dictionary size of the decoder is another determinant
of the model’s capability. A larger dictionary enables the decoder
to generate a wider array of outputs, enhancing the diversity and
specificity of the generated text. Nevertheless, a vast dictionary
with many infrequent words may result in a sparse output distri-
bution, which could lead to the model assigning disproportionately
low probabilities to some words and excessively high probabilities
to others during the decoding phase. This, in turn, could adversely
affect the fluency and readability of the generated text.

Additionally, experiments conducted with a pre-trained BART
[29] decoder revealed that the performance of a pre-trained lan-
guage model may not surpass that of a model trained from scratch.
This suggests that the new task at hand is significantly divergent
from the pre-trained task, and the pre-trained model may struggle
to adapt effectively, leading to challenges in knowledge fusion.
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3. NEW METHOD FOR DATA AUGMENTATION

Apart from the model presented, this project also finds a novel way
to increasing the performance of the model. This project introduces
a novel noise - spectrogram. By adding the corresponding specgram
with the output of encoders, the model can reach an upper level.

The spectrogram provides valuable information about the fre-
quency distribution of the signal, which can be more abundant than
the time domain information in the original audio signal. Incor-
porating this information into the model as noise can enhance its
ability to learn and differentiate various audio features. Addition-
ally, combining spectrogram and audio features facilitates feature
fusion, enabling the model to comprehend audio data from diverse
perspectives. This multi-spacial feature fusion contributes to an im-
proved understanding of audio content by the model. Furthermore,
this representation closely aligns with how sound is perceived by
the human auditory system. Therefore, utilizing spectrograms as
a source of noise can simulate complex sound environments that
more closely resemble real-world scenarios encountered by human
hearing, thereby enhancing the model’s robustness in practical ap-
plications.

In addition, the spectrogram is also used as a residual [30] to
compensate for the information ignored by the encoder. Sound
events, such as speech and music, usually contain more complex
information, such as semantic functions, different sounds represent
different meanings, and can also convey emotions and express in-
tentions. Although environmental noise also contains the physical
attributes of sound, compared with speech and music, its informa-
tion content may be relatively simple, mainly describing the state or
change of the environment, such as traffic noise, machine running
sound, etc.

The depth of the encoder network poses a significant challenge;
an overly deep architecture can lead to a desensitization to sub-
tle differences among sound categories, resulting in a homogeniza-
tion of stimuli. This, in turn, can diminish the effectiveness of the
model’s decoding capabilities, as a reduction in mean square er-
ror does not necessarily correlate with improved perceptual qual-
ity. To counteract this, the project introduces a novel approach that
leverages the inherent discrepancies in the stimuli—specifically,
the original audio signals—to compensate for information loss due
to neural network filtering and compression. This strategy is de-
signed to guide the decoder along the desired convergence trajec-
tory, thereby enhancing the fidelity of the output.

However, the integration of spectrograms as an intrinsic compo-
nent of the model, particularly during the generative phase, has not
yielded the anticipated results in experiments, sometimes even in-
troducing deleterious effects. This project hypothesizes that the raw
audio data, laden with noise and interference, may introduce ad-
ditional errors and uncertainties, potentially distorting the model’s
performance during evaluation.

Empirically, this project has identified several viable method-
ologies. Preliminary experiments suggest that the efficacy of these
methods is context-dependent, and there is no one-size-fits-all so-
lution. Due to time constraints, the project has not conducted ex-
tensive comparative experiments to further validate and categorize
these approaches. Nevertheless, based on current findings, follow-
ing conclusions can be drawn:

1. Firstly, the spectrogram of an audio signal encompasses two
primary dimensions: the frequency domain (F) and the time
domain (T), denoted as F-T. And the feature representation

within a model is typically conceptualized as time (T) and
feature dimensions (H), denoted as T-H.
When considering the integration of these two tensors, two
approaches can be particularly effective. One approach in-
volves directly adding the tensors in a residual fashion,
where the F-T and T-H dimensions are combined. The other
approach involves transposing the frequency dimension of
the spectrogram to align it with the feature dimension, thus
achieving a T-F to T-H superposition. Both of these meth-
ods, or a hybrid combination of the two, can yield promising
results and are recommended to be flexibly employed during
training.

2. The optimal timing for integrating the spectrogram into the
model requires further investigation. The project explored
two primary strategies: pre-superposing before the signal
passes through the decoder’s projection layer, and post-
superposing after the fully connected layer. The former in-
troduces a projection layer and a RELU activation function
to selectively enhance information, while the latter ensures
the integrity of the spectral data, and since the model has
done most of the feature extraction and abstraction at this
point, it provides more flexibility. Both methods have their
merits and are effective, though their performance may vary
across different models.

Given that a spectrogram serves as a visual portrayal of how a
signal’s frequency varies across time, and considering the past suc-
cesses in applying visual models to the realm of acoustics (AST
[31], ACT-DeiT [32]), this project postulates that the same method-
ology holds promise for application in traditional visual models.
Nonetheless, the lack of comprehensive experimental data necessi-
tates further exploration and validation of this hypothesis.

4. EXPERIMENTS

In this project, three datasets are used for training and testing. In
order to verify the feasibility of the theory, 4 models were exhibited
for comparison. Model Full is the full model trained with addi-
tional AudioCaps and WavCaps dataset. Model Clotho is the full
model trained only on Clotho v2 dataset. Model Ref is the model
trained only on Clotho v2 dataset but without the sepcs-noise data
augmentation. Model Simple is the model trained without the se-
mantic encoder and the sepcs-noise data augmentation on Clotho v2
dataset. The results are shown as below:

Model ID METEOR CIDEr SPICE SPIDEr SPIDEr-FL
Model Full 0.1959 0.5291 0.1382 0.3337 0.3318

Model Clotho 0.1925 0.4949 0.1396 0.3173 0.3142
Model Ref 0.1880 0.4808 0.1334 0.3069 0.3054

Model Simple 0.1783 0.4471 0.1259 0.2865 0.2781

Table 1: Results of models with different structures and data en-
hancement strategies on Clotho Development-Test subset.

The salient feature of this project is its robust performance, even
when trained on a limited dataset. It is worth noting that the model
can still ensure convergence when the batch size is small, achieving
good performance.

When utilizing only the Clotho dataset and assuming a single
GPU training environment equipped with a GTX 4090, the expected
duration of the training process is about 200 minutes. In this time
frame, the semantic encoder is expected to achieve convergence at
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the 70th iteration, while the decoder needs 30 iterations to achieve
the best performance. The training scheme employs an AdamW
optimizer that utilizes a learning rate of 3e-5, which can be sensi-
bly reduced to 1e-5 to potentially improve the effectiveness of the
model. At a batch size of 64, the training of the model requires a
large memory footprint of 20,000 MiB.

In addition, the project observed a correlation between metrics
such as SPIDEr [33] score and the number of GPUs in use when
deploying the model for evaluation across multiple GPUs, although
the output of the model did not change. This phenomenon sug-
gests that the scoring process may induce some degree of variation
even when there is no data overlap between GPUs. Specifically,
the estimated observation error is +3.6% when using 5 GPUs to en-
sure non-overlapping processing of 1045 test samples. In light of
these findings, the project advocates the use of a single GPU during
testing to obtain a more accurate and unbiased assessment of the
model’s capabilities.

5. CONCLUSION

The model presented in this paper demonstrates a robust approach
to Automatic Audio Captioning, leveraging a combination of ad-
vanced model architecture and innovative training strategies. The
results indicate that this project not only captures the audio’s se-
mantic and temporal features but also enhances the model’s ability
to generalize and perform well on unseen data.
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