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ABSTRACT

Bioacoustic monitoring is an invaluable tool for understanding
wildlife well-being. However, the scarcity of annotated data for
effective model training coupled with domain shifts resulting from
data recorded at various sensor locations with diverse acoustic en-
vironments poses significant challenges for deep learning-based
audio classification systems. In this paper, we propose a novel
cross-dataset data augmentation technique designed to effectively
use the limited annotated data available, exemplified by the few-
shot learning task 5 of the DCASE challenge. Furthermore, we
employ Instance-wise Feature Projection-based Domain Adapta-
tion (IFPDA) to mitigate the domain shifts caused by variations in
recording locations or devices. We use a modified ResNet model
architecture for a multitask learning setting, which combines multi-
class species classification on a patch level and binary classification
for frame-level sound event detection.

Index Terms— Domain adaptation, data augmentation, few-
shot learning, IFPDA

1. INTRODUCTION

Bioacoustic monitoring plays a crucial role in assessing wildlife
well-being. Despite its importance, the limited availability of an-
notated data for training models and the domain shifts imposed
by recordings from different sensor locations with varying acoustic
conditions, present substantial challenges for deep learning-based
audio classification systems. Few-shot learning (FSL) offers an ef-
fective tool for bioacoustic researchers, presenting a promising ap-
proach to address the scarcity of annotated data. In FSL, the model
must learn to classify N classes, each with K annotated samples,
and then make predictions on the remaining data (N -way-K-shot
classification).

Task 5 of the DCASE Challenge includes training and valida-
tion sets for development, alongside an evaluation set. The objective
is to develop a FSL system for bioacoustic sound event detection
(SED). This system is supposed to be trained using the provided
training set and the first five annotated sound events (support set,
K = 5) of a class in a given audio recording from the evaluation
set. The developed model should then predict all sound events of
the same class in the remainder of that specific file (query set).

As shown in Table 1, the training set, comprises five datasets
covering different animal species with a total of 47 classes. Each
recording is accompanied by an annotation file that indicates
whether a species is vocalizing (positive/Pos.) or not (nega-
tive/Neg.) within a specified segment defined, using its start and

Table 1: Overview of the development set of the DCASE Challenge
2024 task 5 [1].

# Files Duration (h) # Classes Sample
rate (Hz)

Training Sets

BV 5 10 11 24000
HT 5 5 3 6000
JD 1 0.16 1 22050
MT 2 1.16 4 8000
WMW 161 4.66 26 -
Overall 174 21 47 -

Validation Sets

HB 5 2.63 1 44100
PB 6 3 2 44100
ME 2 0.33 2 48000
RD 6 18 1 48000
PB24 4 2 2 44100
PW 15 24 1 96000
Overall 43 49.95 7 -

end times. In addition, if the species cannot be identified or clas-
sified, the annotation is marked as unknown. Fig. 1 illustrates an
example of a recording from the ME dataset with Pos. segments
(green horizontal bars in the bottom row) and Neg. segments (red
bars).

Figure 1: Example of a recording from ME dataset. positive and
negative segments are shown with green and red area at the bottom
row respectively.
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Figure 2: The flowchart illustrates the proposed workflow for FSL, which encompasses data preprocessing (upper and lower blocks, middle
column), data generation (purple boxes), and model pre-training and fine-tuning. Dash-lined lines denote the pre-training process, while solid
arrows indicate the fine-tuning phase.

From Table 1, it becomes evident that this task impose several
significant challenges. First, the sampling rates vary widely, rang-
ing from 6 kHz in the training set to 96 kHz in the validation set.
This disparity poses risks such as the introduction of artifacts and re-
duced frequency resolution during upsampling, or potential loss of
information during downsampling. Secondly, the highest sampling
rate in the training datasets is only slightly more than half of the
lowest sampling rate in the validation set, which could complicate
transfer learning between the training and validation sets. Further-
more, the varying durations of each dataset result in highly unbal-
anced sound classes. Finally, since all datasets have been recorded
at different locations with different acoustic recording equipment,
we expect that, domain shift imposes a significant challenge in de-
veloping a robust FSL system [2].

In this paper, we present the CROSS-ADAPT technique to si-
multaneously address the challenges posed by imbalanced datasets
and domain shifts arising from discrepancies in recording locations.
This approach integrates a cross-dataset data generation strategy
with a domain adaptation component, namely Instance Feature Pro-
jection Domain Adaptation (IFPDA), seamlessly incorporated into
a modified ResNet model for feature extraction.

2. PROPOSED METHOD

The proposed workflow for SFL in this work consists of pre-training
and fine-tuning phases each consists of two main parts: Data-
Generation and training the model. The flowchart of the entire
pipeline is illustrated in Fig. 2. The upper part of the figure, depicted
with dash-lined lines related to pretraining the multi-task learning
model and bottom part marked with solid lines representing the fine-
tuning and prediction in frame-level.

Figure 3: Probability distribution of positive segment with lengths
shorter than 1 s, and frame duration of 10 ms, in the training dataset.

2.1. Feature Extraction Parameters

In this paper, we resample all audio recordings at 48 kHz sample
rate and compute Mel spectrograms with 128 Mel bands combined
with Per-Channel Energy Normalization (PCEN) [3]. We use an
FFT size of 2048, a window size of 1024, and a hopsize of 480 sam-
ples resulting to 10 ms time resolution (frame size). The spectro-
grams are normalized to a 0-1 range per audio recording.

Given the various duration of the analyzed audio files, the pro-
posed FSL model for SED, processes spectrogram segments of uni-
form length (patches). The choice of a suitable patch size is criti-
cal for the potential of the system to generalize well to new animal
vocalizations of unknown duration. As illustrated in Fig. 3, we an-
alyzed the entire set of annotation files from the training set and
found that most positive segments are shorter than 200 milliseconds
with only a small fraction of longer segments up to 1 s. Based on
this observation, we decided to use 1 s long patches.
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2.2. Cross-Dataset Data Generation

Processing the datasets provided as part of this DCASE task comes
with some major challenges: On the one hand, not all classes of
a dataset are necessarily present in each file, and each species dis-
plays diverse behaviors regarding how frequently they call and for
how long they call leads to intra-dataset imbalance. On the other
hand, the total duration of the datasets varies significantly, ranging
from 10 minutes for the JD dataset to 10 hours for the BV dataset
resulting to inter-dataset imbalance.

To overcome these challenges and efficiently utilize the anno-
tated data, we introduced a novel cross-dataset data generation tech-
nique (CROSS-ADAPT), which includes the following steps: (1)
For each file of a given dataset, we first collect all positive sam-
ples for each class. (2) We selected 28 distinct classes from the
training set after excluding classes with only a few positive samples
or a very short overall duration. (3) Subsequently, we created one
pool of negative segments for each dataset. Each pool includes not
only segments that are labeled as negative for all classes but also
segments without any label.

As an underlying principle of the proposed data generation pro-
cess, we create spectral patches by randomly combining positive
segments (animal calls) and negative segments (background noises)
across datasets. We extract negative segments using an overlap of
up to 80 % from smaller datasets and without overlap from larger
datasets to ensure sufficient variability during patch creation. All
negative segments are shuffled and evenly distributed into 28 parts
corresponding to the 28 classes to ensure diverse background noises
across all animal call classes. Finally, patches are created by com-
bining positive segments from each of the five training sets with
20 % of negative segments coming from the same dataset and 80 %
from other datasets.

We allocate 70 % of all positive segments for model training
and divide the remaining 30 % equally for model validation and
testing. If positive segments exceed the patch size, we slice them
into smaller segments with varying lengths and strides. In cases
of insufficient positive segments, we replicate them as needed, pro-
vided their length is less than 60 % of the patch size. This repetition
of positive segments, coupled with the uniqueness of the negative
segments, mitigates the risk of overfitting and aids the model in
learning the characteristics of the positive segments, even when they
are divided into smaller sections. In general, we place the positive
segments in a random position within each patch. Some Example
of generated patches is shown in Fig. 4

We use the same data generation procedure as explained above
for the validation and evaluation datasets with the key difference
being that each file is processed individually and negative segments
are not shared across files. Specifically, to utilize approximately
70 % of the total duration of the first five shots, 3 to 4 shots are allo-
cated for few-shot learning. The remaining 1 to 2 shots are used to
generate validation and test data. Additionally, negative segments
preceding the 5th shot are used for patch creation. If the negative
segment is too short for patch creation, other augmentation tech-
niques such as horizontal flipping, time stretching, or compression
are applied to extend its duration.

2.3. Domain Adaptation

The IFPDA technique [4] implements a separate frequency-wise
normalization of each patches. The covariance matrix of each patch
captures the interdependencies among its frequency bands. The

(a) c 9

(b) c 14

(c) Q

Figure 4: Example of generated patches for the classes c 9 (a) and
c 14 (b) from WMW dataset and (c) class GIG from HT dataset

eigenvectors corresponding to the L largest eigenvalues of this ma-
trix are utilized as a transformation matrix. By multiplying the
normalized patch with this transformation matrix, its magnitude
is projected along the direction that exhibits the greatest variabil-
ity within the covariance matrix. We integrate this technique into
our processing pipeline to mitigate domain shift as it has demon-
strated strong performance for domain adaptation in various audio
domains [4], [5].

2.4. Model Pre-Training using Multitask Learning

As shown in Fig. 2, our model has a dual output branch architec-
ture. It consists of a residual network (ResNet) as the front-end and
two separate classification heads. Conceptually, the first head uses
multiclass classification to classify the corresponding animal class
for a given patch, while the second head implements a binary classi-
fication on a frame-level to locate positive segments. As detailed in
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Table 2: Summary of multitask classification network architectures
(37,234,841 parameters)

Network Block Layers/Parameters

Feature Extraction Model (Modified ResNet)

Norm. Layer IFPDA
Conv. Block k = 64 ∗ (3 ∗ 3), s = (2 ∗ 1)

BatchNorm2D
ReLU
MaxPooling2D: k = (3∗3), s = (2∗1)

Res. Layer 1 3*Conv. Blocks
kout = 64 ∗ (3 ∗ 3)

Res. Layer 2 4 Conv. Blocks
kout = 64 ∗ (3 ∗ 3)

Res. Layer 3 8 Conv. Blocks
kout = 128 ∗ (3 ∗ 3)

Res. Layer 4 3 Conv. Blocks
kout = 256 ∗ (3 ∗ 3)

Multiclass classification branch (patch-level)

Pooling AdaptiveAveragePooling2d((1,1)
Flatten

Output Dense (number of classes)

Binary classification branch (frame-level)

Conv. Block 1 Kout = 128 ∗ (3 ∗ 3)
ReLU
BatchNorm2D(128)

Conv. Block 2 Kout = 32 ∗ (3 ∗ 3)
ReLU
BatchNorm2D(32)
Flatten

TimeDistributed Dense (number of classes)

Table 2, the front-end includes a normalization layer using IFPDA
and a sequence of four residual layers with different numbers of
convolutional blocks each. The multiclass classification head com-
bines average pooling and flattening to predict the overall class of
species. The binary classification head includes two additional con-
volutional blocks followed by a time-distributed dense layer to ob-
tain frame-level predictions.

2.5. Model Finetuning and Prediction

After the model is pre-trained on the generated dataset from training
set, the multiclass classification head is discarded, and the ResNet
front-end layers are frozen. Given any new audio recording from
validation or evaluation dataset, the binary classification head is
fine-tuned using the support set of that file and the fine-tuned model
is then used to make predictions on the query set.

Our method demonstrates an overall performance of 47.05 %
on the validation set, achieving the highest F-score of 56.48 % on
the ME dataset and the lowest F-score of 40.85 % on the PW dataset.
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