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ABSTRACT

Sound Event Detection (SED) has shown promising performance
in detecting and classifying meaningful events on the given audio
signal input. Since the real-world scenario does not provide well-
labeled data, there had been an urge to extend the research to a
rather “coarse” labeled dataset. In this report, we propose a novel
model to perform robustly on the well-labeled datasets and poten-
tially missing labeled datasets using large pre-trained audio trans-
formers throughout the training process. Our method can improve
the performance to 0.52 in PSDS1 and 0.77 in pAUCM .

Index Terms— Sound Event Detection (SED), BEATs, Audio
Teacher-Student Transformer (ATST), Conformer, Convolutional
recurrent neural network (CRNN)

1. INTRODUCTION

Sound event detection (SED) is a field of research that detects the
timestamp of a specific event and classifies its event in an audio sig-
nal. While traditional audio classification and detection tasks, such
as audio tagging, recognize what types of sound events are present
in an audio stream, SED aims to pinpoint precise onset and offset of
distinct sound events. This specialty of SED makes it crucial for ap-
plications requiring real-time or post-hoc analysis of acoustic envi-
ronments like security or home Internet of Things (IoT) services[1].

There have been several strategies in deep learning that sig-
nificantly enhanced the capabilities of SED systems. For exam-
ple, self-supervised audio transformers such as BEATs [2] and Au-
dio Teacher-Student Transformer (ATST) [3] showed that obtain-
ing better audio representation embeddings in training can boost
the performance. Likewise, several methods designed new layers to
reflect temporal and spectral characteristics of audio signals, lead-
ing to remarkable proficiency [4, 5, 6]. Researchers proposed re-
search that applies novel frameworks such as knowledge distilla-
tion, semi-supervised learning, and contrastive learning to improve
performance [7, 8, 9]. New metrics were suggested to evaluate SED
systems’ performance more rigorously [10, 11], and a few methods
suggested novel strategies to deal with post-processing the output
of SED system [12, 13]. Despite significant progress, few chal-
lenges persist in developing robust SED systems. First, audio sig-
nals in the real world consist of multiple overlapping classes, mak-
ing SED model hard to identify a specific sound event. This leads
to rather disappointing detection results when multiple sound events
co-occur. Second, SED systems are still vulnerable to variations in
the acoustic environment. While there have been efforts to imple-
ment robust SED systems by applying heavy augmentations on the
training audio signals [14, 15], current SED systems are still vul-
nerable to the unpredictability in acoustic environments of the real

Figure 1: The figure of our proposed model CRNN-CON and over-
all framework. Instead of using extracted embeddings, we give raw
audio signals as input to the pre-trained model. We used ATST and
BEATs in our framework, but we believe that our method can be
applied to any pre-trained model, hence we use the term pre-trained
model in the place where ATST and BEATs exist.

world. The most important problem beyond these two problems is
the scarcity of labeled data. Since the task of SED is to pinpoint the
exact timestamp of particular audio events, it requires a dataset with
the precisely labeled onset and offset for a large number of classes.
Previous studies have used the Audioset [16], a large-scale audio
dataset with manually annotated events up to 632. However, the
fact that the Audioset is manually annotated still holds uncertainty.
Synthetic datasets have been used to address these uncertainty is-
sues, but the limitation still exists. To deal with the drawbacks, the
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following DCASE 2024 challenge [17] aims to take the SED sys-
tem to another level by dealing with various datasets in training. The
challenge provides a variety of datasets from different domains. In
this paper, we propose a novel model architecture that integrates a
typical Convolutional recurrent neural network (CRNN) with con-
former [18]. We also optimize the training process for the different
in-domain datasets so that the overall performance is guaranteed
even when trained on the datasets from different domains. By do-
ing so, our system will advance SED systems, thereby enhancing
their utility and performance in real-world scenarios.

2. DATASET

The DCASE 2024 Challenge Task 4 development set consists of
two datasets: DESED dataset and MAESTRO Real dataset [19].
DESED dataset [20], commonly used in the previous DCASE chal-
lenges, consists of 4 datasets: weakly labeled dataset, unlabeled in-
domain dataset, synthetic dataset, and strongly labeled real dataset.
The weakly labeled training set contains 1,578 clips of weak anno-
tations, and the unlabeled training set consists of 14,412 clips. The
synthetic set has 10,000 audio clips, while the real data set consists
of 3,470 clips. On the DCASE 2023 challenge, a new soft-labeled
training set, MAESTRO Real set [21], was introduced on Task4B.
The MAESTRO set consists of real-world recordings lasting 3 min-
utes in several acoustic scenes. Since the audio was annotated with
multiple annotators, it does not provide fine-label information. The
DESED dataset aims to detect 10 classes of sound events such as
“Alarm bell ringing”, “Speech”, and “Vaccum cleaner”. MAE-
STRO dataset contains 17 classes, and it shares overlapping labels
such as “People talking”, “Cutlery and dishes”. MAESTRO dataset
only provides information in 1-second segments, which means there
is no fine-grained timestamp or labeling information inside the sec-
ond segment. This makes them different from traditional SED
datasets and raises questions about the applicability of conventional
methods.

3. PROPOSED CRNN-CON FRAMEWORK

3.1. Model

Given that the dataset holds mass diversity, we intend to raise the
models’ ability to extract necessary auditory features from signals
even in label-deficient settings. In this submission, we used two
types of models: an existing model and our novel model. For an
existing model, we utilize the Frequency-dynamic convolution [4]
model. We infer this model FDY-CRNN for easy explanation.

We use conformer encoder blocks with the CRNN model to ex-
tract all the essential features from the audio input. The architecture
of our novel model is shown in the figure 1. The conformer block
contains feed-forward layers, multi-head self-attention (MHSA),
and convolution layers. This allows the conformer to get local infor-
mation through CNN layers while extracting long-range global con-
text from the self-attention layer. We presumed that implementing
the following characteristic of conformer allows our systems to dis-
tinguish between different classes even when multiple sound events
overlap. The original conformer model consists of 16 conformer
encoder blocks, and implementing the whole model might lead to
overfitting. Thus, we downsized the size of the conformer and re-
arranged the parameters through experiments. In the same way, we
downsize the number of layers in the CNN network is essential as
maintaining the original 7 layers of the CNN network might lead

Figure 2: The figure depicts our ensemble. (a) shows our hetero-
geneous ensemble, which consists of two different models: FDY-
CRNN and CRNN-CON. (b) describes the typical ensemble frame-
work of the proposed model, CRNN-CON. Due to the capacity of
GPU, we use 4 models for our ensemble.

to performance degradation. We infer our model as CRNN-CON
for easy explanation. A similar approach in applying the conformer
model in SED tasks[22] exists, our framework differs in the way
that we use both RNN module and conformer encoder blocks to use
the extracted information at its utmost.

3.2. Implementation Details

Figure 1 depicts our overall framework. In this challenge, we incor-
porate BEATs and frame-level ATST, combining baseline method
[17] and state-of-the-art method [15]. We designed the framework
based on the official implementation of ATST-Frame1 and the base-
line implementation2 since the ATST method did not include MAE-
STRO dataset. ATST method trains the model through two stages,
but we used stage 1 as the sole training process as the framework
undergoes severe performance degradation after stage 2 training.
The committee also provided a synthetic dataset for MAESTRO.
However, we did not use the following dataset since it did not im-
prove performance. We speculate that the amount of synthetic data
in the DESED dataset is sufficient enough that additional MAE-
STRO datasets are unlikely to increase overall performance. For
CRNN-CON, we stack only 4 layers of conformed blocks and re-
arrange the kernel size of MHSA layers and dimensions. We also
prune the size of the CNN network from 7 layers to 4 layers. Simi-
larly, we propose two types of ensemble framework: heterogeneous
ensemble and typical ensemble. We configured FDY-CRNN and
CRNN-CON in a 1:1 ratio in the heterogeneous ensemble. With
this design, we speculated that the ensemble could perform robustly
on both fine-grained and coarse-labeled datasets, thereby achieving
high scores on both PSDS1 and pAUCM instead of excelling in

1https://github.com/Audio-WestlakeU/ATST-SED
2https://github.com/DCASE-REPO/DESED task
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methods models pre-trained model postprocessing augmentation PSDS1 pAUCM total metric submission

methods

baseline [17] BEATs median filter - 0.485 0.643 1.128 -
FDY-CRNN [4] BEATs median filter - 0.484 0.677 1.161 -

CRNN-CON BEATs median filter - 0.473 0.686 1.159 -
CRNN-CON ATST + BEATs median filter True 0.481 0.763 1.244 -
CRNN-CON ATST + BEATs SEBB True 0.502 0.760 1.262 submission 1

FDY-CRNN [4] ATST + BEATs median filter True 0.507 0.734 1.241 submission 2
FDY-CRNN [4] ATST + BEATs SEBB True 0.484 0.711 1.195 -

ensemble

FDY-CRNN + CRNN-CON ATST + BEATs median filter True 0.517 0.760 1.277 submission 3
FDY-CRNN [4] + CRNN-CON ATST + BEATs SEBB True 0.493 0.758 1.251 -

CRNN-CON ATST + BEATs median filter True 0.489 0.765 1.254 -
CRNN-CON ATST + BEATs SEBB True 0.501 0.762 1.263 submission 4

FDY-CRNN [4] + CRNN-CON BEATs median filter True 0.512 0.701 1.213 -

Table 1: The table shows PSDS1 and pAUCM metric of baseline and models on the validation set. We submitted 4 systems in the DCASE
2024 challenge. The performance of each submission is emphasized in bold.

one metric. For an ordinary ensemble, we tried both models on the
sole and chose the better one. In building an ensemble network,
we combined 5 FDY-CRNN and 5 CRNN-CON models to build
the heterogeneous model with pre-rained BEATs. For the ensemble
model with ATST and BEATs, we used only 2 FDY-CRNN and 2
CRNN-CON due to the capacity of the GPU. The following archi-
tecture is specified in Figure 2.

3.3. Training

For training, we extract the mel spectrogram with 2048 FFT size,
hop length of 256, and 128 mel bins from the raw waveform. For
pre-trained ATST, we extract the mel spectrogram with 1024 FFT
size, hop length of 160, and 64 mel bins. The dropout method was
applied to the model at a rate of 0.5. We trained for 200 epochs.
One of our baseline [15] gave different learning rates in different
layers of the network, but we unified the learning rate to 0.001. We
define f as our SED model and θ as our model parameter. Training
dataset D can be defined as below.

D = {(x1, y1), (x2, y2), · · · , (xN , yN )} (1)

where xi denotes the acoustic feature gained from i-th audio clip,
and yi corresponds to the ground truth label. Each yi can also be
explained as yi = {yi

1, · · · , yi
T } where yi

1 ∈ {0, 1}K for K classes
and T time frames. By this notations, We can define ŷ, which is the
prediction of our model f and have the probability of K classes on
T time frames.

ŷi = f(xi, θ) ∈ {0, 1}K×T (2)

As we use the binary cross entropy (BCE) loss function, loss func-
tion LBCE can be described below.

Lbce = −
T,K∑
t,k=1

yt,klog(ŷt,k) + (1− yt,k)log(1− ŷt,k) (3)

Since we adopt a teacher-student scheme as our baseline, we use
the mean squared error (MSE) loss function between student and
teacher models. Given that we defined θ as our model parameter,
We can define θ′ as the parameter of the teacher model. For the
batch size B, loss function LMT can be described below.

LMT =
1

|B|
∑
i∈B

||f(xi, θ′)− f(xi, θ)|| (4)

With equation 3 and equation 4, the total loss function L can be
simplified as below.

L = LBCE + LMT (5)

For data augmentation, We applied filteraugment [23], mixup
[14] and frequency warping [15] methods for data augmentation
on 50% of probability. We did not use augmentation regarding the
time-axis which might lead to critical information loss. We avoid
applying data augmentations to pre-trained model input. We discuss
the effect of data augmentation on the pre-trained model in depth in
the following section 4 and section 5.

3.4. Postprocessing

We used median filter and Sound Event Bounding Boxes (SEBB)
[24] to boost the performance of our baseline system afterward.
While conducting the experiments, we realized that any frame-
work with FDY-CRNN tends to show a performance degradation
in PSDS1 up to 0.02 when SEBB is applied. On the other hand,
it showed promising improvements in the CRNN-CON framework.
Thus, we used a median filter to Submission 2 and Submission 3 as
it have an FDY-CRNN network. We applied SEBB in Submission
1 and Submission 4, which contain only CRNN-CON models. We
compare and analyze the effect of SEBB further in section 4 and
section 5.

4. EXPERIMENTS

Our experiments can be divided into single-model systems and en-
semble systems. First of all, we conducted experiments on the origi-
nal baseline, FDY-CRNN, and CRNN-CON models under the same
conditions to compare the performance between models. Then we
compare FDY-CRNN and CRNN-CON with different pre-trained
models: BEATs and BEATs+ATST to compare the effect of ATST
on our framework. For ensemble systems, we compare the hetero-
geneous ensemble and typical ensemble to compare the efficacy of
mixing different models. For the ablation study, we conducted ex-
periments to see how applying augmentations to a pre-trained model
embedding affects the performance of the SED framework.

As the challenge deals with so-called “fine-grained” labeled
datasets and “coarse” labeled datasets, different metrics for each
dataset are required for an objective evaluation. Therefore, we
use two metrics: polyphonic sound detection scores on scenario 1
(PSDS1) and pAUCM . PSDS1 were applied to the DESED
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models filteraugment [23] frequency warping [15] PSDS1 pAUCM

CRNN-CON
D 0.470 0.672D 0.384 0.654D D 0.381 0.673

FDY-CRNN
D 0.449 0.683D 0.430 0.671D D 0.421 0.639

Table 2: Performance comparison between models with different
augmentation on the pre-trained model. Each model already has the
two given augmentations applied to it. All model uses BEATs as
pretrained model.

dataset, and pAUCM to the MAESTRO dataset [25]. This way, we
can see objective results without the different characteristics of the
datasets being influenced by each other.

5. RESULTS

The performance of our proposed methods and ensembles are
shown in Table 1. The first three rows of the table compare the
performance of the baseline model with FDY-CRNN and CRNN-
CON under the same conditions. It shows that two models can out-
perform the CRNN model by a small margin. The results show
that the combination of BEATs and ATST plays a huge role in the
model’s performance. We speculated that this result comes from the
differentiation between BEATs and ATST-Frame. Both BEATs and
ATST-Frame have in common that they are models trained with self-
supervised learning. However, ATST-Frame is better than BEATs at
extracting frame-wise auditory representations since it is trained on
a frame-by-frame basis [15]. BEATs can obtain information about
the global representation [2]. This has the advantage that the long-
term representation between frames can be retained. Therefore, we
can assume that these advantages create synergy, increasing the per-
formance to 1.262.

When we compare the performance between single models, we
find the possibility of a heterogeneous ensemble. we can see that the
pAUCM shows drastic change while the PSDS1 metric is stable
up to 0.50 with FDY-CRNN as a baseline model. By these results,
we can infer that Frequency dynamic convolution may be robust
in DESED dataset. In the case of CRNN-CON, CRNN-CON can
achieve high performance on MAESTRO dataset as pAUCM of
CRNN-CON baseline shows up to 0.763. With these results, we can
infer that the conformer may show robust performance even in the
“coarse” labeled dataset. Based on these speculations, Wwe thought
that if we ensemble these two models in the right proportions, we
could get good performance for both pAUCM and PSDS1. The
performance of heterogeneous ensembles with BEATs achieves up
to 0.501 in PSDS1 and 0.701 in pAUCM , almost equivalent to
training a single model with two large pre-trained models. These
results demonstrate ensembles can deliver performance that single
models cannot. For the ensemble using BEATs and ATST together,
the increase in performance is slightly less than for BEATs, but the
fact that PSDS1 and pAUCM are close to the best performance
of each model is notable.

In table 5, We also conducted experiments to verify the effect
of data augmentations on the pre-trained model input as an abla-
tion study. When we compare the performance of CRNN-CON in
table 1, PSDS1 and pAUCM showed performance degradation.
The dramatic performance drop in PSDS1 indicates that apply-
ing data augmentation on pre-trained models negatively impacts the

CRNN-CON framework. Similarly, applying augmentation on the
FDY-CRNN framework also results in performance degradation on
both metrics. Considering that the performance drop is smaller than
CRNN-CON, we can infer that the role of frequency dynamic con-
volution and the depth of convolution layers in CNN may play a
part in the robust performance in SED.

6. CONCLUSION

In this report, we proposed our novel CRNN-Con and framework
using two pretrained model BEATs and ATST-Frame. Our novel
model and framework shows that we can preserve the PSDS1 per-
formance of the CRNN model while boosting the pAUCM metric
on the new soft-labeled dataset. Further, we conducted an experi-
ment to verify the effect of applying data augmentation to pertrained
model. We tend to expand our framework for the future research.
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