
 

Data Augmentation and Cross-Fusion for Audiovisual Sound Event Localization and Detection 

with Source Distance Estimation  

Technical Report 

Yongbo Li Chuan Wang Qinghua Huang 

Shanghai University 

1398518787@shu.edu.cn 

Shanghai University 

wangchuan1101@shu.edu.cn  

Shanghai University  

qinghua@shu.edu.cn 

ABSTRACT 

This technical report describes a system participating in the 

DCASE2024 challenge Task 3: Sound Event Localization and 

Detection with Source Distance Estimation-Track B: Audio- 

Visual Reasoning. A system based on the official baseline system 

is developed and improved in terms of network architecture and 

data augmentation. The convolutional recurrent neural network 

(CRNN) is substituted by a ResNet-Conformer block pre-trained 

on an audio-only network. Audio Channel Swapping (ACS) is 

applied to the DCASE 2024 official audio dataset to generate 

more audio data. A simulated audio dataset is also created. Video 

Pixel Swapping (VPS) is performed on the original video data to 

obtain more video data. Experimental results show that our sys-

tem outperforms the baseline method on the Sony-TAU Real 

Spatial Soundscape 2024 (STARSS24) development dataset. A 

series of experiments are implemented only on the First-Order 

Ambisonics (FOA) dataset. 

Index Terms— Data augmentation, resnet-conformer, 

sound event localization and detection, sound distance estimation 

1. INTRODUCTION 

Sound Event Localization and Detection (SELD) is a combined 

task involving Sound Event Detection (SED) and Direction of 

Arrival (DOA) estimation. It identifies the categories of sound 

events and their corresponding pitch and azimuth angles in 

three-dimensional space over time. As an intelligent system, 

SELD has diverse applications in video surveillance, robotics, 

autonomous driving, scene visualization, and acoustic monitor-

ing. 

The SELD task was first introduced as Task 3 of the 

DCASE challenge in 2019 [1]. It was based on emulated multi-

channel recordings, generated from event sample banks spatial-

ized with spatial room impulse responses (SRIRs) captured in 

various rooms and mixed with spatial ambient noise recorded at 

the same locations. Initially, the DCASE 2019 included only 

stationary sound sources. To enhance the task, moving sound 

sources and unknown directional inferences were introduced in 

the subsequent 2 DCASE challenges [2] [3]. DCASE 2022 

TASK 3 marked a significant departure from previous iterations, 

transitioning from computationally generated spatial recordings 

to recordings of real sound scenes that are manually annotated 

[4]. DCASE 2023, maintained all the recordings from 

STARSS22 while incorporating an additional 4 hours of material 

captured at Tampere University. This additional data is distribut-

ed between the training and evaluation sets. Furthermore, 

STARSS23 included simultaneous 360° video recordings for all 

audio recordings, offering a more comprehensive view of the 

sound scenes [5]. Additionally, the dataset augments the respec-

tive labels with source distance information, in addition to the 

direction of arrival. However, this approach does not take ad-

vantage of full spatial information by limiting it to the DOA only. 

In many cases, performing Sound Distance Estimation (SDE) 

would be also important to obtain the explicit position of the 

sound source in space.  

This year the challenge task resembles the previous itera-

tion, evaluating SELD models with audio-only input (Track A) 

or audiovisual input (Track B) on manually annotated recordings 

of real interior sound scenes. However, this year the task intro-

duces distance estimation of the detected events [6], which 

makes the task significantly more challenging. 

In this report we particularly focus on Track B, which con-

sists of audio and video data for the Sound Event Localization 

and Detection with Source Distance Estimation system. Methods 

based on data augmentation and neural networks to improve 

accuracy are introduced. Experimental results show that our 

system outperforms the baseline method on the development 

dataset of Sony-TAU Realistic Spatial Soundscapes 2024 

(STARSS24). 

This report is organized as follows: Section 2 introduces 

our proposed method. Experiments and discussion are shown in 

Section 3. Finally, the conclusion is shown in Section 4. 

2. METHODS 

2.1.  Feature 

For audio features, the STARSS24 dataset provides two record-

ing formats: the first-order ambisonics (FOA) and tetrahedral 

microphone array (MIC). The 4 channel 24kHz FOA recording 

format audio is used. For FOA, features need to be extracted 

from the audio. First, two time-frequency domain features are 

extracted through short-time Fourier transform (STFT): Log-Mel 

Spectrogram and Intensity Vector (IV). The Log-Mel Spectro-

gram and IV are then concatenated as input audio features. For 

video features, images are extracted at 10 fps. These images are 

then passed through a pre-trained ResNet-50 to obtain advanced 

video features. 



 

 
Figure 1: The architecture of the model 

2.2.  Network architecture 

The official baseline architecture consists of an audio encoder, a 

video encoder, and a feature fusion module. The audio encoder 

is a CRNN, the video encoder is a linear layer, and the fusion 

module is a Transformer Decoder. We have improved the audio 

encoder based on the baseline network architecture, as shown in 

Figure 1. 

2.3.  Audio Encoder 

The audio encoder input of the baseline system consists of 250 

frames of 7-channel data. A CNN layer is used to downsample 

the frames to 50, matching the video and label information. Then, 

audio data is transmitted to the GRU. We improved the CRNN 

in the baseline with ResNet-Conformer blocks pre-trained on the 

audio-only network. We mix the augmented audio data with the 

official audio data for training. This helps us obtain a better 

audio-only model as the audio encoder. In the ResNet setting, 

we use four residual blocks. Each block contains a 1×1 convolu-

tion kernel and two 3×3 convolution kernels. In the Conformer 

setting, we utilize 2 Conformer blocks. Each Conformer block is 

configured with the following parameters: an input dimension of 

256, 8 attention heads, a feed-forward dimension of 256, a 

depthwise convolution kernel size of 31, and a dropout rate of 

0.1. 

2.3.1. Visual Encoder 

Advanced video features from ResNet-50 into the video encoder. 

The video encoder consists of a linear layer to obtain video 

features of the same shape as the audio features. 

2.3.2. Feature Fusion 

The audio features and video features are input together into the 

Transformer Decoder for feature fusion utilizing cross attention. 

The audio features are denoted as Q, while the video features are 

denoted as K and V. 

2.4.  Data augmentation 

2.4.1. Audio Data Augmentation 

The official audio development dataset has 8 hours of real data 

recorded in real sound environments, of which about 4.5 hours 

are used as training sets. Therefore, data augmentation tech-

niques are crucial. Three methods are used to expand the audio 

data. The first method is ACS spatial augmentation, which is 

proposed by [7] in their previous work. This technique uses the 

rotation characteristics of the recorded dataset to improve the 

DOA representation. Additionally, an external dataset is adopted 

for training, specifically 750 recordings from FSD50K along 

with the 1200 recordings provided by the official dataset. The 

third method [8] simulates new multi-channel data using SRIR 

and sound samples extracted from FSD50K and AudioSet. Spe-



 

cifically, the single-channel sound samples in these external 

datasets are convolved with SRIR to create a 1-minute-long 

multi-channel scene recording with a maximum polyphony of 2. 

This method effectively generates additional synthetic audio data.  

2.4.2. Video Data Augmentation 

Similarly, 4.5 hours of video data is not enough to extract accu-

rate features. We use VPS proposed by Wang et al [9] to con-

sistently enhance the visual modality. Completely new video 

frames are generated by flipping and rotating the original video 

frames. 

3. EXPERIMENTS AND DISCUSSION 

3.1.  Training Procedure and Evaluation Metrics 

In order to compare the baseline and proposed network fairly, 

the hyperparameter settings have hardly changed, except for the 

modified learning rate of 1e-4. The evaluation metrics have 

changed this year, from the previous 4 metrics (location-

dependent F1 score, location dependent error rate (LE), DOA 

localization error, and localization recall (LR)), to the use of 

location-dependent F1 score and DOA error (DOAE), and the 

addition of a new relative distance error (RDE). This year F1 

score is different from previous years. The F1 score is spatially 

thresholded not only on the angular distance of predictions from 

the reference events, but also on the distances from the refer-

ences. This year the task performs macro-averaging mode, 

which computes the metrics for each class and then averages 

them along the class. 

3.2.  Results and Discussion 

Approximately 90 hours of audio data are used to train the au-

dio-only model, which is then fine-tuned for the audio-visual 

model based on the audio pre-trained parameters Table 1 showed 

the experimental results of the proposed audio-visual method on 

the development dataset. As shown in Table 1, the performance 

of the proposed audio-visual system is significantly better than 

the baseline system. 

 

Table 1: The performance comparison for different methods on 

development dataset. 

 F20°/1(%)↑ DOAE (°)↓ RDE (%)↓ 

AO Baseline 13.1 36.9 33 

AV Baseline 11.3 38.4 36 

Our Proposed 39.2 18.7 31 

4. CONCLUSION 

This report proposes a system to solve the audio-visual 

SELD task in Task 3 of the DCASE 2024 challenge. We 

focus on data augmentation and pre-trained method. Data 

augmentation methods are used to extend both official and 

synthetic datasets. Pre-trained method is used to obtain 

more robust SELD estimates. Experimental results show 

that the proposed method achieves significant improve-

ments over the baseline system. 
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