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ABSTRACT

This technical report presents an automated audio captioning (AAC)
method participating in the DCASE 2024 Challenge Task 6. The
method builds upon our previous work [1]'. Recent advancements
in large language models (LLMs), coupled with improved training
approaches for audio encoders, have opened up possibilities for en-
hancing AAC. Thus, we optimize AAC from three points: 1) a
pre-trained audio encoder named consistent ensemble distillation
(CED) improves the effectivity of acoustic tokens, with a query-
ing transformer (Q-Former) bridging the modality gap to LLM and
compress acoustic tokens; 2) we introduce a Llama 2 with 7B pa-
rameters as the decoder; 3) a frozen Llama 3 Instruct with 8B pa-
rameters corrects text errors caused by insufficient training data and
annotation ambiguities. Both the encoder and text decoder are opti-
mized by low-rank adaptation (LoRA). Our method obtains a 53.2
FENSE score.

Index Terms— AAC, CED, LLM, LoRA, Q-Former, acoustic
token, error correction

1. INTRODUCTION

Automated audio captioning (AAC) is a multimodal task to describe
the audio content in natural language [2]. Distinct from speech-
to-text conversion, the AAC system implements the audio-to-text
conversion to capture the underlying acoustic semantic informa-
tion. AAC studies have gathered increasing interest in recent years,
driven by the rising demand for intelligent interactions and infor-
mation retrievals.

In recent studies, the typical encoder-decoder architecture has
been progressively constructed [2]. The audio encoder extracts
acoustic tokens from the input audio, while the text decoder gen-
erates the caption based on acoustic tokens. Generally, audio or
speech extractors serve as the encoder (e.g., PANNs [3], BEATs [4],
SpeechTS5 [5], and Whisper [6]), and language models serve as the
decoder (e.g., BERT [7], GPT-2 [8], and BART [9]). Despite var-
ious encoder-decoder combinations, state-of-the-arts (SOTAs) con-
sistently leverage pre-trained models. For instance, the winner of
the DCASE 2023 Challenge [10] uses a BEATs-BART architecture.

In this technical report, we present our method sharing a sim-
ilar architecture with current mainstream methods. The architec-
ture combines an audio encoder and a text decoder. Innovatively, a
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Figure 1: Architecture of the proposed method.

post-corrector is used to corrects text errors caused by insufficient
training data and annotation ambiguities.
The information on the core components is as follows:

e Audio encoder: consistent ensemble distillation (CED) [11]
with querying transformer (Q-Former) [12].

o Text decoder: Llama 2 with 7B parameters [13].
e Post-corrector: Llama 3 Instruct with 8B parameters [14].

This method is based on our previous work [1], wherein exper-
iments shows that each component is effective and collective. Our
method obtains a 53.2 FENSE score on Clotho evaluation split.
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2. METHODOLOGY

As illustrated in Figure 1, the proposed method is an encoder-
decoder architecture.

2.1. Audio Encoding

CED is an Audio tagging model with higher mean average precision
(mAP), lower computational complexity, and fewer output tokens
than the widely used Bidirectional Encoder representation from Au-
dio Transformers (BEATSs) [4]. It employs a simple training frame-
work on distilling student models from large teacher ensembles with
consistent teaching [11]. A pre-trained CED model (without the
output layer) serve as the audio encoder and is fine-tuned using
low-rank adaptation (LoRA), a parameter-efficient fine-tuning ap-
proach for Transformer [15]. When processing the same audio clip,
CED generates only approximately half the number of tokens com-
pared to other models (e.g., BEATs and Whisper). Producing 248
tokens per 10 seconds with CED still amounts to a relatively large
data for decoding. To bridge the modality gap, every 17 tokens are
compressed to 1 token using Q-Former, which enhances encoding
attention and decreases decoding complexity. The final number of
acoustic tokens is equal to those processed by the 14-layer convolu-
tional neural network (CNN14) [3].

2.2. Text Decoding

A regular language tokenizer performs the pre-processing opera-
tion. Subsequently, the Llama 2 decoder with 7B parameters is
also fine-tuned using LoRA to tailor it the downstream task. This
refined decoder is capable of producing more precise captions by
leveraging optimized audio encoding and the deeper understanding
provided by LLMs. As described in Table 1 (Prompt I in Fig-
ure 1), an instruction prompt guides Llama 2 in understanding AAC
tasks. <AcousticTokens> denotes acoustic tokens, which are
text-like tokens directly embedded into text tokens.

2.3. Error Correction

Under current conditions of insufficient training data and annotation
ambiguities, the text decoder may learn incorrect patterns, such as
single phrase loops and grammatical errors. While data augmenta-
tion can mitigate errors to some extent, linguistic errors may still
persist. Thus, a frozen Llama 3 Instruct with 8B parameters is em-
ployed during the inference stage to correct linguistic errors. In this
work, the post-corrector is activated only when the error probabil-
ity exceeds the threshold (90%) set by the Error Detector [16]. To
guide the error correction process, the instruction prompt (Prompt
I1) contains a sentence that does not conform to linguistic conven-
tions, and <Text > denotes the input sentence (intermediate caption
in Figure 1) of the post-corrector.

2.4. Loss Function

The training of the our network is divided into the pre-training and
fine-tuning stages. In both stages, cross-entropy is used as the loss
function.

N
1
Lop = -~ Zlogp(yn | y1:n—1,X) (M

n=1

where X, N and y,, denotes input audio, the number of ground truth
tokens, and n-th token in a caption, respectively.
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Table 1: Instruction prompts of the proposed method.

Describe  the detail of this audio:

Prompt I <AcousticTokens> \n — \n Detailed:
System: You are a language specialist who can
revise the sentence to make it more correct and

Prompt IT idiomatic! You should follow the below format:

rain is falling on a tin roof ==> rain is falling
on the tin roof
User: <text>

2.5. Data Augmentation

Alongside Clotho and AudioCaps, the WavCaps dataset [17] is in-
troduced for data augmentation. Since Clotho is extracted from
Freesound website, the forbidden clips in WavCaps has been ex-
cluded. WavCaps is a large-scale weakly labeled audio cap-
tioning dataset comprising approximately 400k audio clips with
paired captions sourced from AudioSet [18], BBC sound effects?,
FreeSound®, and SoundBible*. The captions in WavCaps are based
on a three-stage processing pipeline by ChatGPT [19]. The audio
clips from all three datasets are uniformly cropped into 10 seconds
for training purposes. During the fine-tuning stage, the model is
separately trained on Clotho.

3. EXPERIMENTS

3.1. Evaluation Dataset

The evaluations are primarily based on the Clotho v2.1 dataset [20],
recognized as the the most authoritative dataset and the benchmark
for ranking in the DCASE 2024 Challenge. The audio clips are
no longer than 30 seconds and the captions contains 8 to 20 words.
The dataset is split into the development, validation, evaluation, and
testing subsets. Performance comparisons are conducted on Clotho
evaluation split.

3.2. Metrics

The experiments refer to almost all metrics in DCASE 2024 Task
6, including METEOR [21], CIDEr [22], SPICE [23], SPIDEr [24],
SPIDEr-FL [16], Sentence-BERT [25], and FENSE [16]. The rank-
ing metric is FENSE. METEOR and CIDEr are both based on n-
gram overlap, while SPICE focuses on the overlap computed on
semantic graphs constructed by objects, attributes, and relations.
SPIDEt is the mean of CIDEr and SPICE. SPIDEr-FL utilizes the
Error Detector of FENSE to penalize the SPIDEr score of the sen-
tence with an error probability greater than 90%. Sentence-BERT
and FENSE are both BERT-based models to evaluate the similarity
between the ground truth and the generated caption, with FENSE
incorporating an Error Detector to penalize erroneous sentences.
Additionally, BLEU [26] and ROUGE-L [27], two supplementary
metrics, are included in ablation studies to enhance the credibility.
In Tables 2, B1 to B4, RG, ME, CD, SP, SD, SD-F, SB, and FS de-
note BLEU-1 to BLEU-4, ROUGE-L, METEOR, CIDEr, SPICE,
SPIDEr, SPIDEr-FL, Sentence-BERT, and FENSE. All scores are
multiplied by 100.

2https://sound-effects.bbcrewind.co.uk/
3https://freesound.org/
“https://soundbible.com/
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Table 2: Performance Comparison on Clotho evaluation split.

Sysytem ID Encoder Decoder B1 B2 B3 B4 RG ME CD SP SD  SD-F SB FS
Baseline ConvNeXt Transformer 59.5 392 260 170 393 190 462 134 298 29.6 506 504
Submission 1 ~ Dasheng-Base  Llama2-7B 599 39.6 267 17.6 444 19.1 499 139 319 318 523 522
Submission 2 Dasheng-0.6B  Llama2-7B 593 388 254 163 434 187 458 137 298 297 521 520
Submission 3 CED-Base BART-Base 57.1 381 254 163 443 17.8 447 127 287 287 521 521
Submission 4 CED-Base Llama2-7B  60.6 404 272 178 445 194 503 145 324 323 534 532

3.3. Implementation Details

We train our models on two NVIDIA A100 (80 GB) GPUs with the
Trainer accelerator’. The models are optimized on an AdamW opti-
mizer [28] with a weight decay coefficient of 1 x 10~ % and warming
up first 0.3 epochs. We pre-train the models with 10 epochs, a batch
size of 48, and a learning rate of 5 x 1075, while we fine-tune
the models with 20 epochs, a batch size of 10, and a learning rate
of 5 x 107%. LoRA matrices are added to the “q” and “v” of the
Transformer architecture. The audio sampling rate is 160000 Hz.

3.4. Results

The experiments include three different encoders: CED-Base [1 11,
Dasheng-Base [29]7,and Dasheng-0.6B [291". It also include two
different decoders, including Llama 2-7B [13] and BART-Base [9].
The8 scores of baseline [30, 31] is obtained from the official web-
site®.

The experimental results is shown in Table 2. LoRA and
QFormer are used in all experiments, so the relevant information
is omitted in the table. The details of the our AAC systems are as
follows:

e Submission 1: A Dasheng-Llama architecture, which is a sin-
gle model with Dasheng-Base and Llama 2-7B.

e Submission 2: A Dasheng-Llama architecture, which is a sin-
gle model with Dasheng is the middle version and Llama 2-7B.

e Submission 3: A CED-BART architecture,, which is a single
model with CED-Base and BART-Base.

e Submission 4: A CED-Llama architecture, which is a single
model with CED-Base and Llama 2-7B.

Therefore, the best version is Submission 4 with a 53.2 FENSE
score.

4. CONCLUSION

This technical report describes several AAC systems for DCASE
2024 Task 6. The best version is Submission 4. This method builds
upon our previous work [1]. To optimize audio encoding, we com-
bine CED-based encoder with LoRA. To optimize text decoding,
we also fine-tune a Llama 2-7B with LoRA. Q-Former connects the
audio encoder and the text decoder, building an effective bridge to
capture and represent the underlying acoustic features while reduc-
ing decoding complexity. A frozen Llama 3-8B-Instruct corrects

Shttps://huggingface.co/docs/transformers/trainer
Shttps://github.com/RicherMans/CED
7https://github.com/RicherMans/Dasheng
8https://github.com/Labbeti/dcase2024-task6-baseline

text errors caused by insufficient training data and annotation am-
biguities. The proposed method obtains a 53.2 FENSE score on
Clotho evaluation split.
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