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ABSTRACT

This paper describes our submission for the DCASE 2024 task 2.
The objective is identifying whether the sound emitted from a ma-
chine is normal or anomalous without having access to anomalous
samples. The ASD model we designed to calculate the anomaly
scores is a CED based supervised model. To alleviate the problem
of domain shifts, we use sub-cluster noisy-arcmix combined with
asymmetric focal loss to balance the data weights while learn more
compact intra-class representations for normal samples. In addition,
we explore data augmentation methods such as manifold mixup and
FeatEx to further improve the model perfomance. Our best sin-
gle model achieves a pAUC of 55.81%, a source domain AUC of
67.79%, and a target domain AUC of 65.88% on the development
dataset.

Index Terms— Anomalous Sound Detection, Domain Gener-
alization, First-Shot, Audio Pretrained Model

1. INTRODUCTION

Anomalous sound detection (ASD) has a wide range of applica-
tions in the field of machine condition monitoring, enabling the as-
sessment of machine functionality based on sound analysis. This
technology can be applied to industrial monitoring, helping to re-
duce labor costs in factories. It can also be applied to the field of
autonomous driving, providing timely warnings of vehicle safety
hazards and preventing loss of life and property.

In recent years, the DCASE task 2 has focused on the detec-
tion of machine anomaly sounds in first shot scenarios. This task
involves the use of development and evaluation datasets with ma-
chine classes that are completely different. In addition, there is a
domain shifts problem in the training data caused by machine state
or environmental changes. Currently, there are two main categories
of mainstream ASD methods: supervised learning methods based
on a classification pretext task and unsupervised learning methods
that utilize AutoEncoders for a reconstruction pretext task [1]. Su-
pervised methods often demonstrate exceptional performance when
there is an abundance of labeled data, whereas unsupervised meth-
ods can maintain relatively stable performance regardless of the
availability of labeled data. However, unsupervised methods gener-
ally have inferior upper bounds on performance compared to super-
vised methods. Due to the fact that annotated attributes information
is not always available in reality, the DCASE 2024 task 2 [2] does
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not provide attributes information for some of the machine types.
As a result, the ASD system is required to work well regardless of
whether or not machine attributes are provided.

Inspired by recent advancements in large-scale audio pre-
training models [3], we propose a supervised ASD method that uti-
lizes CED-base as the backbone network for feature extraction. To
address the challenge of data imbalance, particularly domain shifts,
we introduce a sub-cluster noisy-arcmix combined with asymmet-
ric focal loss. This approach aims to balance sample weights while
learning more compact intra-class representations for normal data
and pushing away representations of anomalous data. Furthermore,
we introduce time-shift, FeatEx [4], and two mixup [5] strategies
for data augmentation to enhance the model’s generalization ability
by increasing the difficulty of the classification task.

The paper is structured as follows: In Section 2 we introduce
our ASD method. In Section 3 details regarding the experimental
setup and results are provided. The conclusion is given in Section
4.

2. PROPOSED METHOD

2.1. CED-based Supervised Classification

Our ASD model is trained using a classification-based supervised
learning approach, where the joint labeling of machine type and at-
tributes is used as the classification target. For machine types that
do not have attributes, it is assumed that the machine type has only
one attribute with the value ’None’. In the training phase, the model
learns the characteristic patterns of normal machine audios by per-
forming the classification task. In the testing phase, the model cal-
culates the anomaly score by measuring the cosine distance between
samples and the normal samples in the learned feature space.

We expect to exploit the generalization ability of models pre-
trained on large-scale audio data. Therefore, we use the pre-trained
CED-base [6] model as our audio encdoer and fine-tune it with the
training data. For encoder outputs, we utilize a Sub-Cluster Noisy-
arcmix combined with Asymmetric focal Loss (SC-NAL), which
helps to improve the compactness of intra-class representations and
alleviate the issue of domain shifts.

2.2. Data Augmentation

To further enhance the generalization ability of the model, we apply
time shift, mixup and FeatEx for data augmentation. In addition to
the standard mixup, we also utilize manifold mixup [7].This method
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Metric baseline
(MSE)

baseline
(MAHALA)

Our
(32sc)

Our
(32sc+FeatEx)

Our
ensemble

ToyCar
AUC(source) 66.98% 63.01% 48.60% 53.60% 55.28%
AUC(target) 33.75% 37.35% 55.36% 60.84% 55.48%

pAUC 48.77% 51.04% 49.53% 49.26% 50.84%

ToyTrain
AUC(source) 76.63% 61.99% 65.20% 68.60% 70.24%
AUC(target) 46.92% 39.99% 57.92% 62.24% 59.08%

pAUC 47.95% 48.21% 53.68% 53.79% 55.11%

bearing
AUC(source) 62.01% 54.43% 51.32% 60.32% 64.08%
AUC(target) 61.40% 51.58% 66.96% 67.88% 70.52%

pAUC 57.58% 58.82% 56.53% 53.84% 60.05%

fan
AUC(source) 67.71% 79.37% 59.88% 60.84% 59.84%
AUC(target) 55.24% 42.70% 69.04% 68.96% 70.60%

pAUC 57.53% 53.44% 57.37% 58.21% 58.79%

gearbox
AUC(source) 70.4% 81.82% 74.28% 77.48% 78.12%
AUC(target) 69.34% 74.35% 70.64% 75.32% 75.96%

pAUC 55.65% 55.74% 56.42% 60.16% 56.16%

slider
AUC(source) 66.51% 75.35% 81.92% 76.08% 86.96%
AUC(target) 56.01% 68.11% 64.12% 60.40% 67.12%

pAUC 51.77% 49.05% 50.95% 51.47% 52.63%

valve
AUC(source) 51.07% 55.69% 89.96% 91.28% 91.32%
AUC(target) 46.25% 53.61% 68.28% 68.12% 63.44%

pAUC 52.42% 51.26% 63.89% 67.89% 64.95%

All(hmean)
AUC(source) 65.00% 65.77% 64.29% 67.79% 70.07%
AUC(target) 50.28% 49.51% 64.13% 65.88% 65.35%

pAUC 52.84% 52.28% 55.14% 55.81% 56.60%

Table 1: Main results proposed in our work for the DCASE 2024 Task 2 challenge on the development dataset

involves interpolating at the embedding level, aiming to further re-
fine the decision boundary. The mixed embedding is calculated as
follows:

ẽ = λei + (1− λ)ej

ỹ = λyi + (1− λ)yj
(1)

Where ei and ej represent the embedding of two random training
samples, and yi and yj are the corresponding labels. During train-
ing, we apply standard mixup with a probability of p1 = 0.25, and
Manifold mixup with a probability of p2 = 0.25.

Furthermore, in order to enhance the complexity of the classi-
fication task, we apply a simplified FeatEx. FeatEx was originally
designed for CNN with two sub-networks to generate a new embed-
ding by exchanging the outputs of different samples in each branch.
It also incorporates label expansion to simulate anomaly classes.
However, our experiments revealed that label expansion has limited
effects on the model. So as to utilize the noisy-arcmix [8] loss, we
choose not to perform label expansion. Additionally, as CED does
not have a two-branch structure, we replicated the model output
twice to simulate two branches. The simplified FeatEx calculates a
new augmented embedding as follows:

enew = (ei, ej) ∈ R2D

ynew = (0.5 · yi + 0.5 · yj) ∈ [0, 1]N
(2)

Here, ei and ej denote the embedding of two random training sam-
ples, and yi and yj are the corresponding labels. For the samples
that are not enhanced by simplified FeatEx, the new embedding is
defined as enew = (e, e) , while the label y remains the same.

2.3. Sub-Cluster Noisy-Arcmix with Asymmetric Focal Loss

In the DCASE task 2, the training data only consists of normal ma-
chine audios. To improve the model’s ability for distinguish abnor-
mal audio during the testing phase, it is necessary for the model to
learn compact representations. To this end, we apply noisy-arcmix,
which combines the benefits of mixup and ArcFace [9]. Choi et
al. demonstrated that noisy-arcmix can effectively compact the dis-
tance between intra-class normal samples without significantly af-
fecting the proximity of abnormal samples. In addition, inspired
by SCAdaCos [10], we model multiple sub-clusters for each class.
After applying noisy-arcmix, we sum the softmax scores of all sub-
clusters for each class to encourage our model learning more com-
plex distributions. The calculation of the sub-cluster noisy-arcmix
loss for sample x is as follows:

LSC-NAL(x, y) = −yTlog
ecos(θ+my)∑NS

k=1 e
cos(θk+myk)

(3)

Here, N is the number of classes and S is the number of sub-
clusters.

To alleviate the issue of data imbalance, where there are only
10 target domain samples out of 1000 training samples for each
machine type, we use asymmetric focal loss [11] instead of the stan-
dard cross-entropy loss, which can flexibly adjust the loss weights
according to the training difficulty, assigning higher weights to sam-
ples that are harder to classify.
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SC(FeatEx)
1 16 32 64

SC

1 61.37% 61.41% 60.76% 60.66%
16 60.34% 61.67% 61.84% 60.74%
32 59.48% 61.52% 61.81% 61.92%
64 60.42% 60.34% 60.01% 60.15%

Table 2: mean AUCs for different sub-cluster settings

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

The data used for this task including two recent machine audio
datasets, ToyADMOS2 [12] and MIMII DG [13]. We train our
model on both the development dataset and the additional training
dataset. The development dataset contains audio recordings from 7
machine types that are different from the evaluation dataset, while
the additional training dataset includes audio recordings from 9 ma-
chine types that are the same as the evaluation dataset. All training
audios have a sample rate of 16kHz and durations ranging from 6s
to 12s. We normalize all audios to a duration of 10s. For audios
shorter than 10s, we perform copy padding, while for audios longer
than 10s, we randomly select a 10s segment.

During the training phase, we employ the AdamW optimizer to
train the model for a total of 20 epochs, with a batch size of 64.
For fine-tuning the CED-base, we follow the pre-training settings
and extract the mel-spectrogram of the audio using a mel bin size
of 64, an fft size of 512, and a hop size of 160. In the testing phase,
we determine the anomaly score by calculating the minimum co-
sine distance between the test sample and all centroids of the source
domain samples, as well as all target samples.

3.2. Results

Table 1 presents a comparison between our ASD model and the
baseline [14] on the development dataset. The results demonstrate
that our method achieves higher average scores across all metrics,
with the most significant improvement on the AUC target. SC-NAL
can effectively enhance the model’s performance on the target do-
main, even without balanced sampling. Additionally, the simplified
FeatEx contributes to a slight improvement across most metrics.

Table 2 presents the mean values of all the AUC metrics under
different sub-cluster settings, including AUC, pAUC, AUC source,
pAUC source, AUC target and pAUC target. It is can be seen that
the performance of the model shows variability when different num-
bers of sub-clusters are employed. A favorable performance can be
achieved by appropriately increasing the sub-cluster number. How-
ever, setting excessively large sub-cluster number can also nega-
tively affect the results.

Observing that there are variations in the model’s performance
across machine types with different sub-cluster settings, we choose
several different single models used for ensemble. Our submissions
system S1, S2 and S4 adopt different model fusion methods, while
S3 is the optimal single model.

4. CONCLUSIONS

In this paper, we introduce our submissions for the DCASE 2024
task 2. We focus on developing an effective supervised ASD model

by utilizing a large-scale pre-trained CED-based encoder. We also
incorporate sub-cluster noisy-arcmix with asymmetric focal loss to
mitigate the domain shifts problem. The experimental results show
that our best single model improves against the baseline(MSE) by
an average AUCs of 7.12% on the development dataset.
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