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ABSTRACT

This technical report details our submission system for
DCASE2024 Task 3: Audio and Audiovisual Sound Event
Localization and Detection (SELD) with Source Distance Estima-
tion. To address the audio-only task, we initially apply the Audio
Channel Swapping (ACS) method to generate augmented data,
enhancing the performance of the proposed system. Subsequently,
we introduce the ConvNeXt module for feature extraction and
processing. To further enhance feature extraction capabilities,
we employ the Squeeze-and-Excitation Block (SEBlock) after
ConvNeXt. We then utilize the Conformer to extract additional
features and ultimately compute the multi-ACCDOA output. The
proposed system significantly outperforms the baseline on the
development dataset of DCASE2024 Task 3.

Index Terms— DCASE2024, data augmentation, Sound event
localization and detection, attention

1. INTRODUCTION

The goal of the sound event localization and detection (SELD) task
is to detect occurrences of sound events belonging to specific target
classes, track their temporal activity, and estimate their directions-
of-arrival (DOA) or positions during those events. SELD systems
can be applied in various fields such as robot auditory systems,
smart home systems, virtual reality (VR), and augmented reality
(AR).

The annual Detection and Classification of Acoustic Scenes and
Events (DCASE) Challenge has consistently drawn researchers’ at-
tention to SELD, particularly Task 3, leading to significant advance-
ments in this area. From 2019 to 2021, Task 3 utilized a simulated
dataset created through spatial room impulse responses (SRIRs)
combined with sound events. In 2022, the dataset transitioned to
real spatial sound scene recordings. The 2023 challenge further
advanced the task by incorporating an audio-visual track, which
included simultaneous 360-degree video recordings accompanying
the audio recordings and additional source distance information in
the labels. This year, Task 3 also introduced distance estimation,
adding another layer of complexity to the task.

The DCASE challenge provides a baseline system that employs
a neural network architecture combining Convolutional Recurrent
Neural Networks (CRNN), Gated Recurrent Units (GRU), and
Multi-Head Self-Attention (MHSA) to address the SELD task[1, 2].

In this report, we focus on the Audio-only track and propose
our system. We utilize the STARSS23 dataset as our primary train-
ing dataset. To enhance the performance of the proposed system,
we incorporate simulated data used in baseline training, generated

using the FSD50 dataset and TAU-SRIR, and perform Augmented
Circular Shift (ACS) data augmentation on the real data during
training[3]. Our network structure is modified from the baseline
by integrating ConvNeXt[4] and Conformer[5] architectures, with
the addition of Squeeze-and-Excitation (SE) blocks[6] after each
layer of ConvNeXt to improve the model’s feature extraction capa-
bilities. Experimental results demonstrate that our proposed model
outperforms the baseline model.

2. PROPOSED METHOD

2.1. Data Augmentation

Although STARSS23 provides a certain amount of real data, the
amount of data still cannot meet the robustness requirements of
model detection. The proposed method uses the Audio channel
swap method to achieve data enhancement. We used 16 rotation
methods to rotate the audio channels and update the labels in the
same form to enhance the audio data in the FOA format. The pro-
posed system only chooses to perform ACS on real data. This is
because performing ACS on simulated data may make the training
time too long and will not bring significant improvement. Table 1
shows 16 rotation methods. After implementing ACS through rota-
tion, the amount of real data increases by 16 times.

2.2. Network Architecture

The Baseline system adopts the CRNN structure, which consists of
3 layers of CNN, 1 layer of GRU, 2 layers of MHSA, and 2 layers
of FNN. This system makes adjustments based on the framework
of the baseline. First, a 5-layer 5×5 convolution ConvNeXt is used
to replace CNN, and an 8-layer Conformer is used to replace GRU
and MHSA, while the FNN structure remains unchanged. In or-
der to improve the model’s feature extraction capability, there is a
Res-SEblock after each layer of ConvNeXt to further enhance the
network’s ability to extract and process features and increase the
global receptive field. Figure 1 shows the framework of the pro-
posed system. The input of the model is the log-mel spectrum of
the 4-channel FOA, which is connected to the 3-channel acoustic
intensity vector. The output is multi-ACCDOA[7], which contains
the information of the sound event and location that occurred at a
certain time. The loss function of the network is ADPIT MSE Loss,
which is the same as the baseline.
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Table 1: ACS implemented through 16 rotations.Swap(X,Y ) means Y ← X,X ← Y

ϕ− π/2 ϕ ϕ+ π/2 ϕ+ π

θ Swap(−X,Y ) - Swap(X,−Y ) Y ← −Y,X ← −X
−θ Swap(−X,Y ), Z ← −Z Z ← −Z Swap(X,−Y ), Z ← −Z Y ← −Y,X ← −X,Z ← −Z

−ϕ− π/2 −ϕ −ϕ+ π/2 −ϕ+ π

θ Swap(−X,−Y ) Y ← −Y Swap(X,Y ) X ← −X
−θ Swap(−X,−Y ), Z ← −Z Y ← −Y,Z ← −Z Swap(X,Y ), Z ← −Z X ← −X,Z ← −Z

Figure 1: Example of a figure with experimental results.

3. EXPERIMENTS

3.1. Dataset and Settings

The proposed system is trained on STARSS23[8] and simulated
data generated by FSD-50K and TAU-SRIRDB[9]. The sampling
rate is set to 24kHz, the number of mel filters is set to 64, and the
STFT is used with 40ms frame length and 20ms frame hop. The
length of the input feature is 250 frames, and the length of the in-
put label is 50 frames. The batch size is 128, the learning rate is
0.001, and the Adam optimizer is used. A total of 400 epochs are
trained. The evaluation indicators are location-dependent F1 score
(F), DOA error (AE), and relative distance error (RDE), which are
consistent with the baseline system. We only use the FOA subset in
our experiments.

3.2. Result

Table 2 shows the results of our system for the DCASE2024 Task
3 Audio-only track on the development dataset. As shown in Ta-
ble 2, the proposed method outperforms the baseline system. This
superior performance is because we adopt multiple modules, which
enables the proposed system to extract more complex features, and
the ACS data augmentation method makes the model more robust.

Table 2: Comparison of the proposed model with the baseline sys-
tem on the development set

F1 AE RDE

Baseline 11.3% 38.4◦ 36%
Submission 33.9% 21.1◦ 30%

4. CONCLUSION

This report presents the proposed system for solving the
DCASE2024 Task3 Audio-only track. We used the ACS data aug-
mentation method to generate simulated data and expand the offi-
cial dataset. At the same time, we used modules such as ConvNeXt,
SEblock, and Conformer to improve the model’s ability to extract
features. The experimental results show the improvement of the
proposed system over the baseline system.
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