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FEW-SHOT BIOACOUSTIC EVENT DETECTION
AT THE DCASE 2024 CHALLENGE

ABSTRACT

In this technical report, we describe the submission system for
DCASE2024 Task 5: Few-shot Bioacoustic Event Detection. In
previous work, we proposed a frame-level embedding learning
system and achieved the best performance in DCASE2022 Task
5. In this task, we propose several methods to improve the
representational capacity of embeddings under limited positive
samples. Three methods are proposed based on the pre-training
fine-tuning process, including the AAPM segment-level
embedding learning method, the Baseline framework-level
embedding learning method, and the Unet network-based
framework-level embedding learning method. Compared to our
previous work, our new system achieved better results on the
official 2023 validation set (F-measure 76.8%, No ML). The
proposed system was evaluated on the newly released official
2024 validation set, with a best overall F-measure score of
70.56%.

Index Terms— DCASE2024, few-shot bioacoustic event
detection, AAPM segment-level, Unet network

1. INTRODUCTION

Few-shot learning (FSL) [1] is a branch of machine learning that
aims to develop effective models using very limited labeled data.
Unlike traditional methods requiring extensive labeled datasets,
FSL seeks to generalize well with just a few training samples per
class (often just a few images or data points). This is typically
explored through N-way-k-shot classification, where N denotes
the number of classes and k denotes the number of examples per
class.

Few-shot bioacoustic event detection (FSBED) is a
relatively new research area focusing on utilizing limited
vocalization data of animals (mammals and birds) to perform
sound event detection (SED) through few-shot learning (FSL)
[2,3]. Essentially, FSBED can be seen as a few-shot image
classification (FSIC) task, where a large query set for each audio
is accessible. Researchers are improving detection performance
in few-shot scenarios using methods like meta-learning,
contrastive learning, and transfer learning.

Meta-learning is a key method in few-shot learning, training
models to quickly adapt to new tasks. Model-Agnostic Meta-

Learning (MAML) [4] initializes model parameters for rapid
fine-tuning with limited data. ProtoNet [1] classifies by learning
prototypes in the feature space. Sabiron et al. used ProtoNet for
bat sound event detection, achieving notable results. Contrastive
learning enhances feature representation through similar and
dissimilar sample pairs. SimCLR [5] uses contrastive loss,
generating positive sample pairs via data augmentation and
contrasting with random negatives for robust feature learning.
Zakszeski et al. studied SimCLR for animal sound event
detection. Transfer learning involves transferring knowledge pre-
trained on large-scale datasets to few-shot tasks. By leveraging
pre-trained models (typically trained on large datasets) to extract
features, transfer learning requires less data for the target task.
For few-shot event detection, this means achieving good
performance even with limited data. Therefore, based on the pre-
training-fine-tuning process, this paper proposes three methods.
First, the Baseline framework-level embedding learning method.
Second, the Unet network-based framework-level embedding
learning method. Third, the AAPM segment-level embedding
learning method.

2. METHODOLOGY

Our detection process is roughly as shown in Figure 1. According
to the positive label and the specific negative segments selection
method, each audio in the test set is divided into positive
segments, negative segments, and query sets. The LOGMEL
features are performed on the spectrograms of audio segments.
Hereafter, the above LOGMEL are input into embedding
extraction network to obtain the segment-level (or frame-level for
frame-level method) embedding representation. Then the
prototype features are obtained by taking embdding mean of
“ postive ” and “ negative ” . The positive and negative central
embedding are spliced to form a 1024*2 feature vector, which is
used as an initialization parameter of the softmax binary
classifier, that is d2 RW . Finally, the embedding of query set
is multiplied by W, and the prediction results is obtained through
a softmax function. Finally, the F1 results of our four systems are
66.66%, 70.56%, 61.69%, and 63.23%, respectively. Detail
results are shown in Table 1.
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Table 1:Detailed validation results of four systems

System Precision
(%)

Recall
(%)

F1
(%)

F1_PB
(%)

F1_HB
(%)

F1_ME
(%)

F1_pw
(%)

F1_RD
(%)

Unet-Frame-Level 64.78 68.65 66.66 65.29 86.06 94.34 51.48 55.40
logmelBase-Frame-Level 76.00 65.70 70.56 67.00 79.00 91.00 67.00 56.00
pcenBase-Frame-Level 74.27 52.76 61.69 62.88 79.68 90.19 59.22 40.62
AAPM-Seg-Level 66.24 60.49 63.23 42.6 88.00 83.64 71.08 54.92

Figure 1: The system framework of few-shot bioacoustic
event detection.

2.1. The Baseline framework-level embedding learning
method

Figures 2 and 3 show the training and testing frameworks of the
embedding learning system based on the Baseline framework.
The frame-level method leverages the similarity between
adjacent frames. Since variable-length audio can extract stable
feature embeddings, we found that the frame-level framework
achieves better adaptability during fine-tuning. Additionally, a
two-step fine-tuning scheme was designed for the testing phase,
allowing the use of both the training set and testing set to obtain
improved feature embeddings.

The embedding system based on the Baseline framework
has its network structure illustrated in Figure 2. It consists of 2
BasicBlock layers, 2 CNN layers, and 1 linear layer, with
detailed configurations shown in Table 2. The BasicBlock is the
core building unit in ResNet [6] (Residual Network) and has
notable advantages over traditional convolutional layers. It
incorporates a skip connection that directly adds the input to the
output. This direct path allows gradients to bypass several layers
during backpropagation, significantly mitigating the vanishing
gradient problem and enabling effective training of deeper
networks. The skip connection also helps the network converge
faster by reducing the training loss and provides a regularization
effect that reduces overfitting and enhances the model's
generalization ability. Log-Mel and PCEN (Per-Channel Energy
Normalization) are two common feature extraction methods in
audio signal processing. Log-Mel is effective in areas like speech
recognition and music information retrieval, being simple, easy
to use, and computationally efficient. PCEN is more suited for
tasks requiring high robustness, such as environmental sound
detection and classification, performing particularly well in noisy
environments. We extract Log-Mel and PCEN features from 128-

bin Mel spectrograms, using 1024 FFT samples and a hop size of
256 samples. In the training phase, we use a simple CE loss
function rather than few-shot loss.

Table 2:The framework-level embedding learning method
network architecture based on the Baseline network

Block kernel_stride Activate
BasicBlock1 Conv, 3×3, (1,64) BN+ReLU

BasicBlock2 Conv, 3×3, (64,64) BN+ReLU

CNN_Block3 Conv, 3×3,(64,64) BN+ReLU

CNN_Block4 Conv, 3×3,(64,64) BN+ReLU
FC Fc(1024,20) softmax

Decoder2 Fc(1024,2) softmax

Figure 2: The framework of frame level model.

Two-step adaptive strategy. As shown in Figure 3, there are
two-steps during fine-tuning. First, the 5-shot labeled support
segments are selected as positive set, and the four segments
between two positive samples are selected as negative set. We
use cross entropy loss function to distinguish the two classes. In
order to obtain better feature representation, we combine training
set and the positive samples to define a 20-classification task.The
second-step, we can get posterior probability of query set by the
first-step model.Through method of fixed threshold selection, we
set a high threshold to filter query results with high confidence
into the positive set, thereby increasing the number of positive
examples for training. Then repeat step1 and step2 until a set
number of iterations. With the frame-level embedding learning,
we got a powerful result in the development set as table 1, which
F1-score is 70.56%.
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Figure 3: The framework of semi-supervised learning.

2.2. The Unet network-based framework-level embedding
learning method

U-Net [7] is a Convolutional Neural Network (CNN) architecture
mainly used for semantic segmentation. It features a symmetric
encoder-decoder structure, where the encoder reduces the input
image's spatial dimensions while increasing feature channels, and
the decoder upsamples these feature maps to generate a
segmentation mask. This architecture allows the extraction of
both low-level details and high-level semantics, which is vital for
few-shot learning. In such cases, making the most of limited data
is essential for accurate classification or detection. U-Net ’s skip
connections enable direct transfer of low-level features to the
decoder, improving information flow during training and
addressing the vanishing gradient issue, which is particularly
important in few-shot learning.

Analysis of the validation and test sets revealed that the
duration of animal sounds varies significantly. Some animals
vocalize infrequently (e.g., BP, BP24), while others do so
frequently (e.g., pw). To extract both low-level detail features
and high-level semantic information, we modified the U-Net
network for feature extraction, using it as the backbone for the
framework-level embedding learning method. The structure of
this method, based on the U-Net network, is detailed in Table 2.

Table 3:The framework-level embedding learning method
network architecture based on the U-Net network

Block kernel_stride Activate
Inc Conv, 3×3, (1,32) BN+ReLU

Down1 Conv, 3×3, (32,32) BN+ReLU
Down2 Conv, 3×3,(32,32) BN+ReLU
Down3 Conv, 3×3,(32,64) BN+ReLU
Down4 Conv, 3×3,(64,64) BN+ReLU
Up1 Conv, 3×3,(64,64) BN+ReLU
Up2 Conv, 3×3,(64,32) BN+ReLU
Up3 Conv, 3×3,(32,32) BN+ReLU
Up4 Conv, 3×3,(32,32) BN+ReLU
FC Fc(1024,20) softmax

Decoder2 Fc(1024,2) softmax

2.3. The AAPM segment-level embedding learning method

Inspired by BirdNET [8] and SSAST [9], we pretrained a
comprehensive animal acoustic pretraining model(AAPM) on

four Titan XP graphics cards using animal audio data within the
allowable range of the rules. In the pretraining process, we
followed the pretraining framework of SSAST and adopted the
ViT model structure as the core. It is worth noting that we did not
directly use the pretraining model of SSAST on audioset and
librispeech datasets, but made full use of the pretraining method
of SSAST to carry out a new pretraining on the regular animal
audio datasets.

Unlike BirdNET and other CNN models that focus on the
audio recognition of a certain kind of animals, our model uses a
transformer based pretraining method to build a comprehensive
model containing the acoustic characteristics of a variety of
animal categories from AudioSet [10] and Xeno-Canto [11].
These animal categories include terrestrial animals (such as dogs,
cats, pigs, crickets, etc.), aquatic animals (such as whales,
dolphins, etc.), flying animals (such as birds, bats, etc.) and
amphibians (such as frogs, etc.).

In order to ensure the generalization ability and robustness
of the model, in addition to using rich animal audio data, we also
introduced a variety of background environment sounds from
AudioSet. These background sounds not only enrich the training
data of the model, but also make the model better adapt to
various complex acoustic environments in practical applications.

Through this series of pretraining and optimization, we have
constructed a powerful and adaptive animal acoustic pretraining
model, which provides a solid foundation for the subsequent task
of few-shot bioacoustic event detection.

2.3.1. Animal Acoustic Dataset

In order to support the pretraining of animal acoustic models, we
carefully constructed a training dataset containing a wide range
of animal audio. This data set integrates the rich animal audio
recorded by Xeno-Canto so far, as well as the animal audio in
AudioSet and diversified background environment sounds. In
order to ensure the practical application ability of the model, we
used animal and background audio in TUT2016 [12]. and ESC50
[13] datasets as validation sets to test our pretrained animal
acoustic model.

In the processing of Xeno-Canto dataset, we use BIRB [14]
processing strategy, but considering the compatibility with
AudioSet dataset, we adopt a fixed 10 second audio length. In
addition, we adhere to high-quality data standards, so we filter
out data below quality level B. In view of the weak label
characteristics of Xeno-Canto dataset, we further assume that the
longer the audio time, the lower the label quality and the higher
the proportion of non event audio. Therefore, we eliminate the
audio with a duration of more than 2 minutes to avoid adverse
effects on model training. For audio with a duration of less than
10 seconds, we use the cycle filling technology to ensure that all
audio samples reach the standard length of 10 seconds.

When using SSAST framework for pretraining, we followed
the SSAST approach in processing the original data. Specifically,
we retain the sampling rate of the original audio, and use the
frame length of 25 milliseconds, the frame shift of 10
milliseconds and the number of 128 Mel bands to extract fbank
features. This process aims to capture the key acoustic
information in audio and provide high-quality feature input for
subsequent model training.
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Figure 4: The framework of the whole system.

2.3.2. Animual Acoustic Pre-trained Model Finetuning

In order to adapt the pretrained animal acoustic model to the new
field, we use the first five positive cases and the negative cases
between the positive cases to finetune the animal acoustic
pretraining model, so that the model can predict more accurately.
In the task of animal acoustic audio detection, in order to
maintain the consistency with the pretraining stage, we followed
the parameter setting of pretraining in the audio framing, that is,
using the frame length of 25ms and the frame shift of 10ms to
extract the fbank feature of 128 Mel bands, and retain the
sampling rate of the original audio. However, due to the short
time length of some animal sound events, there is a significant
difference from the 10 second segment used in the pretraining,
which may lead to the decline of model performance. In order to

solve this problem, we performed cyclic growth processing on
short events in the fine-tuning stage to enhance the detection
ability of the model.

We implement the task of animal acoustic audio detection
by classifying the frames. The framework of the whole system is
shown in Figure 4, which clearly shows the process from feature
extraction to classification decision.

Through experimental verification, we found that animal
acoustic pretraining model is not suitable for single frame
classification detection for all data set categories in few-shot
animal sound detection task. Therefore, when using animal
acoustic pretraining model for downstream fine-tuning
classification, in order to ensure the robustness of the results, we
adopted different frame number settings for different datasets, as
shown in Table 4. This adaptive adjustment strategy effectively
improves the detection performance of the model on different
datasets

Table 4: Adaptive adjustment strategy of frame number

tmin(s) [0,0.1] (0.1,0.2] (0.2,0.4] (0.4,0.8] (0.8,+inf)
frame num 2 10 20 40 80

2.3.3. Loss Function

In animal acoustic audio detection tasks, positive cases (i.e. target
sounds) account for a relatively small proportion in the dataset
and usually belong to a single type, while negative cases (i.e.
background sounds or other non target sounds) account for the
majority and contain a variety of possible sounds. Considering

that the positive cases should have high similarity in acoustic
characteristics, while the positive cases and negative cases should
have significant differences, we designed a loss function based
on cosine similarity to guide the training of the model.

Specifically, we define the cosine similarity function as
),( yxf , which is used to measure the cosine value of the angle

between two vectors, so as to reflect the similarity between them.
For positive case sets, because positive cases account for a
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relatively small proportion in the dataset and usually belong to a
single type, we expect that after model feature extraction, the
feature vectors of any two positive cases have high similarity.
Note that the set of positive cases is   pi Ni 1,p  , where pN
is the number of positive cases, and the feature extraction process
of the model for positive cases is g  iP . We set the goal that is
close to 1 for any )(,i jij  .

When calculating the loss in each iteration, we focus on the
two most dissimilar positive examples at present, that is,
calculate the cosine similarity between all positive example pairs
and take the minimum value. In this way, we get the loss function
of the positive example part as:

  ))),g(pf(g(pji,N,loss jipjip   ,1min1 ,  (1)
For negative examples, because they contain a variety of

possible sounds and a large number, we do not make specific
requirements for the similarity between negative examples.
However, we expect the minimum similarity between negative
cases and positive cases. For this purpose, we calculate the cosine
similarity between the average eigenvector

 
p1p NiN

pg
p

i
 of the positive case set and each

negative case in the negative case set   n1n Nii  (where nN
is the number of negative cases). In each iteration, we focus on
the negative case that is most similar to the positive case, that is,
calculate the cosine similarity between all negative cases and P
and take the maximum value. The loss function between negative
and positive cases is

  )),((max1loss ,,1 Pngf iNin n (2)
Finally, our total loss function is the sum of positive case

loss and negative case loss:
np lossloss loss (3)

By optimizing this loss function, we can make the model
better distinguish positive cases and negative cases in the feature
space, so as to improve the accuracy of few-shot acoustic audio
detection.

We evaluated our method on the validation set in 2024, and
the specific results are shown in Table 1. It is worth emphasizing
that our method does not use the training set data of 2024, but
directly processes each audio file to be predicted separately.
Specifically, we directly use the first five events of each audio
file and its background-information, use the cosine similarity
above tofinetune the model, and then predict the subsequent
audio. In addition, our method does not adopt the strategy of
conductive learning, which further highlights the effectiveness of
our method.

3. EXPERIMENTS

3.1. Experimental setup

We use the Adam[15] optimizer for 20-class pre-training on the
training data with a learning rate of 0.0003. The learning rate is
decayed using StepLR with gamma=0.5 and a step-size of 10.
The network is trained on 80% of the randomly split training data
and validated on the remaining 20%. Training continues until
there is no reduction in validation loss over the last 10 epochs,
and the model with the highest accuracy is selected as the best
model. During fine-tuning, only the last two convolutional layers

and the FC layer are adjusted, with learning rates of 0.0001 and
0.001.

3.2. Data augmentation

Mixup: Mixup [16] is a data augmentation technique that
interpolates the inputs and targets of two audio clips in the
dataset. For instance, if the inputs of two audio clips are
represented as x1 and x2, and their targets as y1 and y2, the
augmented inputs and targets are calculated as x = λx1 + (1 −
λ)x2 and y = λy1 + (1 − λ)y2, where λ is sampled from a Beta
distribution[16]. By default, mixup is applied to frame-level
feature maps.

SpecAugment [17] is a data augmentation technique
specifically designed for speech data, particularly used for
training Automatic Speech Recognition (ASR) systems. The
main goal of SpecAugment is to improve the robustness and
performance of ASR models by augmenting the spectrogram of
the audio signal. SpecAugment operates on frame-level features
using frequency masking and time masking. Frequency masking
involves masking f consecutive mel-frequency bins [f0; f0 + f],
where f is chosen from a uniform distribution from 0 to a
frequency mask parameter F0, and F0 is from [0; F−F], where F
is the number of mel-frequency bins. Time masking is similar to
frequency masking but is applied in the time domain.
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