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ABSTRACT

Unsupervised pre-trained models have demonstrated significant
promise in anomaly detection with domain shifts. The DCASE
2024 Challenge Task 2 focuses on first-shot unsupervised anoma-
lous sound detection. Compared with last year, this year’s challenge
omit the attributes for some machine types. To solve this, we lever-
age large pre-trained models to generate robust representations for
the audio. Novel usage of pseudo labeling and Low-Rank Adapta-
tion (LoRA) are explored in the work. Additionally, we introduce
SMOTE for domain equalization. Through the fusion of various
models and methods, we have achieved a hmean of 68.02% on the
development dataset.

Index Terms— Anomaly detection, fine-tune, pseudo labeling,
sound, pre-trained model

1. INTRODUCTION

In the realm of industrial automation, the ability to detect unusual
sounds is vital for ensuring operational reliability and preventing
potential failures. The DCASE 2024 Challenge Task 2 [1, 2, 3, 4],
First-Shot Unsupervised Anomalous Sound Detection for Machine
Condition Monitoring, focuses on identifying anomalies in sounds
from specific machine types. The complexity of this task lies in
distinguishing normal operational noise from genuine anomalies,
requiring sophisticated algorithms capable of learning from diverse
acoustic patterns. In practical production environments, the diver-
sity of equipment types, complex surroundings, and challenges with
sound data collection make it difficult to develop systems that can
accurately identify and classify abnormal sounds across different
devices and environments. The main challenges can be summarized
as follows:

• The lack of data for training. In real industrial production,
anomalies are quite rare to happen, and the normal operating
sounds of a certain machine are also limited. A proxy task
must be introduced, and it is challenging to train a large-scale
model with limited data.

• The existence of domain shifts. The complexity of indus-
trial production environments, varied noises, and differences
in recording equipment lead to disparate distributions of col-
lected audio data, resulting in potential domain shift issues that
may impact the outcomes of anomaly detection.

• Missing training labels: During the actual data collection pro-
cess, not all instances may have available attribute labels for
training. Models must still achieve good generalization perfor-
mance even when only a subset of the data has labels.

In line with our previous works [5, 6], we leverage multiple
pre-trained models to provide the necessary generalization capabil-
ity across different machines. Additionally, we apply LoRA fine-
tuning [7] to address overfitting issues. To tackle the problem of
missing labels, we utilize pre-trained models to generate pseudo-
labels for training. Furthermore, SMOTE [8] is applied to balance
the differences in sample quantities between different domains. All
submitted systems are ensemble systems where the scores of single
models are linearly combined. The best system achieves a general
harmonic mean of 68.02% on the development set.

The structure of the paper is organized as follows. Section 2
elaborate all single models adopted in the proposed scheme. Sec-
tion 3 give an overview of the submitted systems, and Section 4
presents the detection results.

2. MODEL ZOO

2.1. BEATs

BEATs [9], short for Bidirectional Encoder representation from Au-
dio Transformers, is a self-supervised learning (SSL) framework
designed for comprehensive audio representation pre-training. The
model comprises an acoustic tokenizer and an audio SSL model,
both optimized iteratively. This approach enhances the learning of
audio representations by generating discrete labels with rich audio
semantics, thereby improving performance in audio classification
tasks. Specifically, we employ the BEATs-iter3 version, pretrained
on the entire training set of the AudioSet dataset and featuring 90M
parameters.

BEATs is fine-tuned on the data of all machine types by classi-
fying the attributes. Audio waveforms are first pad or truncate to 10s
and converted to log-mel spectrograms with a frame length of 25ms,
a frame shift of 10ms and 128 mel bins, which is identical with the
original implementation. SpecAug with a maximum mask length of
80 is applied to improve the robustness [10]. To fine-tune BEATs
by machine attributes, an attentive statistics pooling layer proposed
in ECAPA-TDNN [11] is appended to BEATs to fuse frame em-
beddings into utterance embeddings, and two dense layers further
maps the embedding to the predicted logits. Each unique combina-
tion of machine type and attribute is considered as a unique class
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Table 1: Performances of single models on the development set

Base Model Total Trainable bearing fan gearbox slider ToyCar ToyTrain valve hmean

BEATs
BEATs-full 90M 90M 60.17 62.96 68.92 75.61 55.59 62.18 65.47 63.88

BEATs-LoRA 90M 3.73M 68.75 61.85 67.22 70.87 55.43 60.24 68.51 64.26
BEATs-pse 90M 90M 60.16 63.44 66.32 76.74 56.79 56.10 69.64 63.47

EAT
EAT-full 88M 88M 62.56 62.35 66.26 72.62 56.91 60.74 70.72 64.18

EAT-LoRA 88M 11.25M 65.24 61.34 71.99 76.39 57.02 57.37 72.79 65.23
EAT-pse 88M 88M 62.87 64.69 66.64 81.87 56.39 58.69 71.68 65.23

Dual Pre-trained 180M 14.98M 63.79 62.01 61.87 73.01 62.77 66.32 72.70 65.77

for classification, and a machine type without attributes is regarded
as one class. The model is trained by ArcFace loss [12] for 10000
steps by AdamW [13] with a maximum learning rate of 0.0001, a
gradient accumulation step of 8, a warm-up stepof 120 and a batch
size of 32. All parameters are fine-tuned, and we refer to this model
as BEATs-full.

Additionally, we also fine-tune BEATs with low-Rank Adap-
tation (LoRA) [7], which we refer to as BEATs-LoRA. LoRA in-
troduces additional trainable parameters to dense layers within the
Transformer, while the original weights are not updated. However,
different from the original implementation, we figure out that only
injecting additional parameters to the q projection layer, v projec-
tion layer and out projection layer of self attention modules works
best. Therefore, only these layers are updated by LoRA and the
hyperparameter r is set to 64. BEATs-LoRA is also trained by
classifying machine attributes, and the pooling layer and dense lay-
ers are set to be trainable. The model undergoes 50,000 training
steps with an initial learning rate set to 1e-4 and is optimized using
AdamW. Additionally, a cosine scheduler is employed, with a max-
imum learning rate of 5e-3, a minimum learning rate of 1e-5 and 10
warm-up restart steps.

K-nearest neighbor (KNN) detectors are applied to the embed-
dings to detect anomalies, where the distance metric is cosine and
k is selected as 1. For each query embedding, the distance to its
closest neighbor is adopted as the anomaly score. To improve the
performance on the target domain, SMOTE [8] is employed to over-
sample the embeddings of the target domain.

2.2. EAT

EAT [14] is a model designed for self-supervised audio learning,
focused on efficient representation learning from unlabeled audio
data. It introduces a novel objective that integrates global utterance-
level and local frame-level learning, enhancing overall audio un-
derstanding. Additionally, EAT adopts a tailored bootstrap self-
supervised training approach specific to the audio domain. We
leverage the EAT base model pretrained on AudioSet-2M, encom-
passing 88M parameters.

Similar with BEATs, EAT is both full fine-tuned and fine-tuned
by LoRA, which we refer to as EAT-full and EAT-LoRA respec-
tively. Both models pad or truncate raw waveforms to 10s, convert
them to log-mel spectrograms with a frame length of 25ms, a frame
shift of 10ms and 128 mel bins, which is identical with the origi-
nal implementation. SpecAug [10] with a maximum length of 80 is
also applied. Pooling layers and dense layers are also added, and the
models are also trained by attribute classification. EAT-full is op-
timized by an Adam optimizer [15] with a maximum learning rate
of 5e-5 and a warm-up step of 120, while the rest hyperparameters

Table 2: Number of classes for both sets
Set Machine BEATs-pse EAT-pse

dev
gearbox 20 20
slider 20 20

ToyTrain 25 25

eval

AirCompressor 7 5
BrushlessMotor 9 8
HoveringDrone 3 2

ToothBrush 10 6

are identical with BEAT-full. EAT-LoRA is trained by an Adam op-
timizer [15] with a maximum learning rate of 1e-4, while the rest
hyperparameters are identical with BEAT-LoRA.

Both EAT-full and EAT-LoRA adopt the KNN detector intro-
duced in Section 2.1.

2.3. Dual Pre-trained

The multi-branch model integrates embeddings from both models
to improve performance in classification tasks and anomaly detec-
tion, which has been proved effective [16, 17]. We improve this
scheme by substituting two CNN branches with two powerful pre-
trained models, i.e. BEATs and EAT. We refer to this model as Dual
Pre-trained. During training, a novel multi-backpropagation strat-
egy is employed: initially, the loss is back-propagated through each
branch weighted accordingly, followed by a unified backpropaga-
tion across the entire model. This method ensures that each model’s
influence is effectively incorporated and balanced throughout the
training process. The settings for training and anomaly detection
are the same with BEATs and EAT.

2.4. Pseudo Labeling

Pseudo labeling is a commonly adopted solution for semi-
supervised problems, where the model is first trained on the labeled
data and assigns pseudo labels to the unlabeled data, and then the
model is re-trained on the full dataset using both real labels and
pseudo labels. Since attributes are missing for some machine types,
we adopt a two-stage pseudo labeling approach to mitigate the prob-
lem. In the first stage, the model is trained by classifying all avail-
able attributes, where a machine type without attributes is consid-
ered as one class. After training, the model extracts the embeddings
of audio clips without attributes, and applies agglomerative hierar-
chical clustering (AHC) on these embeddings to assign pseudo at-
tribute labels. The number of classes is presented in Table 2, which
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Table 3: Combination coefficients of four submitted systems

System BEATs-full BEATs-LoRA BEATs-pse EAT-full EAT-LoRA EAT-pse Dual Pre-trained

System 1 0.0 0.2 0.0 0.0 0.4 0.0 0.4
System 2 0.0 0.5 0.0 0.0 0.1 0.0 0.4
System 3 0.0 0.0 0.0 0.1 0.3 0.2 0.4
System 4 0.1 0.2 0.0 0.1 0.2 0.1 0.3

is manually determined by applying UMAP [18] visualization on
these embeddings. In the second stage, the model is re-trained from
the initial checkpoint by both the real attribute labels and the pseudo
attribute labels.

Both BEATs and EAT are utilized as the backbone of the model,
which we refer to as BEATs-pse and EAT-pse. The network archi-
tecture, training hyperparameters and detection processes are iden-
tical with Section 2.1 and Section 2.2 respectively.

3. SUBMITTED SYSTEMS

All four submitted systems are model ensembles. Scores of each
single model are first normalized to zero mean and unit standard
deviation, and scores of different models are linearly combined with
the coefficients obtained by grid search on the development set.

Table 3 presents the combination coefficients of four submitted
models. For system 1 and 2, only BEATs-LoRA, EAT-LoRA and
Dual Pre-trained are incorporated for grid search, where system 1
adopts the optimal coefficients, and system 2 adopts an adjusted ver-
sion where the coefficient of BEATs-LoRA is manually increased.
System 3 and system 4 conduct grid search on all seven single mod-
els, where system 3 adopts the optimal coefficients. However, the
optimal coefficients overly emphasize EAT models, thus we slightly
increase the coefficients for BEATs models, resulting in system 4.

4. EXPERIMENT RESULTS

The detection performance is measured by the Receiver Operating
Characteristic (ROC) Curve (AUC) and partial AUC (pAUC). We
calculate the source AUC, the target AUC, pAUC and a harmonic
mean for each machine type, which is in line with the challenge
rule.

Table 1 demonstrates the results of seven single models by the
harmonic mean of AUCs and pAUC for each machine type. EAT
models generally outperforms BEATs model, and the best perfor-
mance is achieved by the Dual Pre-trained model with a general
harmonic mean of 65.77%.

Table 4 presents the detailed results of four submitted systems,
where the best performance is achieved by system 3 with a general
harmonic mean of 68.02%.

5. CONCLUSION

This paper described the AITHU system for first-shot unsupervised
anomalous sound detection, where we developed seven single mod-
els based on two powerful pre-trained models, i.e. BEATs and
EAT. We investigated the use of dual branch, pseudo labeling and
SMOTE oversampling to improve the detection performances of
single models. We also merged these single models into four en-
semble systems by the linear combination of anomaly score. As a

result, the best system achieved a general harmonic mean of 68.02%
on the development set.
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