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ABSTRACT 

This report describes the system we proposed for Task 4 of 
DCASE 2024. To investigate the impact of complex information 
on sound event detection tasks, we designed a system based on 
Complex Convolutional Recurrent Neural Network[1] for semi-
supervised Sound Event Detection (CCRN-SED). We utilized 
the Mean Teacher[2] for semi-supervised learning, which can 
address the challenge of unlabeled data. In addition, we use 
BEATs pretrained model[3] to extract information from data 
outside the development set. The optimal PSDS1 and mean 
pAUC of CCRN-SED on the development test set are 0.508 and 
0.693. 

Index Terms— Complex Convolutional Recurrent 
Neural Network, Mean Teacher, Sound Event Detection 

1. INTRODUCTION 

The purpose of Sound Event Detection (SED) is to identify the 
class of vocalization events and the corresponding start and end 
times in the audio signal. SED can be applied in practical scenar-
ios such as smart homes[4], traffic monitoring[5], and industrial 
production[6]. Currently, audio datasets with strong labels are not 
as rich as those in domains such as speech and image. To en-
hance the amount of data available for model training, models 
can be trained using a large number of unlabeled samples through 
unsupervised or semi-supervised learning approaches. 

Convolutional Recurrent Neural Network (CRNN) is a gen-
eral model architecture used for SED systems[7-9], where the 
CNN module effectively extracts local information from the 
feature map, and the RNN module captures temporal information 
in the audio, enabling the extraction of contextually relevant 
features. The Mean Teacher semi-supervised learning method 
enables the training of SED systems using weakly labeled and 
unlabeled data[10]. 

Complex Convolutional Recurrent Neural Network (CCRN) 
has demonstrated significant performance in Speech Enhance-
ment[1]. This report applied CCRN to the field of SED, which 
gives the SED systems the ability of complex number operations 
to process both amplitude and phase information of audio. Be-
sides, the Mean Teacher method and the BEATs pretrained mod-
el can significantly increase the amount of data learned by the 
system. 

Following this introduction, Section 2 proposes the CCNN-
SED method with the BEATs and Mean Teacher. Section 3 

introduces the experiment on the development dataset. Section 4 
concludes this report. 

2. METHOD 

The architecture of CCRN-SED is shown in Figure 1, which 
mainly contains the Complex CNN module, the Complex LSTM 
module and the Output module. The input is the audio time-
domain waveform sampled at a frequency of 16kHz. The model 
produces two outputs: the strong label and the weak label. The 
specific structure of the three main modules and the system 
processing flow are described in detail below. 

In Figure 1, the audio is first min-max normalized and then put 
into Conv STFT and BEATs. The complex spectrogram is ob-
tained through Conv STFT, and the embedding including the 
information from data outside the experimental dataset is extract-
ed through BEATs. Next, the complex spectrogram is fed into the 
Complex CNN module for deeper feature extraction. The BEATs 
embedding is then resized to match the output of the Complex 
CNN module in the time dimension through a pooling layer, and 
then it is concatenated with the complex spectrogram along the 
channel dimension. Third, the combined feature is passed 
through a FNN layer to obtain the aggregated output. Finally, the 
aggregated output is processed through the Complex LSTM 
module, the Output module generate predictions for both the 
strong label and weak label. 
 

 
Figure 1: CCRN-SED network architecture. 

2.1. Complex CNN module 

Figure 2 illustrates the structure of the Complex CNN module. 
The Complex CNN module consists of six stacked Complex 
CNN blocks. Each block is composed of a sequence of Com-
plexConv2d, BatchNorm2d, and PReLU. Additionally, the last 
two blocks include an AvgPool2d layer. ComplexConv2d pro-
cesses both the channel and feature dimensions, extracting in-
formation from the feature dimension and passing it to the chan-
nel dimension. AvgPool2d processes the feature and time dimen-
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sions, compressing the size of the time dimension from 632 to 
158. The convolution kernel size of ComplexConv is 5 × 2, with 
a stride of 2 × 1, and the pooling window size is 4 × 2. The num-
ber of output channels for the six blocks is [32, 64, 128, 128, 128, 
128], and the size of the output feature dimension is [512, 256, 
128, 64, 8, 1]. 

 
Figure 2: Structure of the Complex CNN module. 

2.2. Complex LSTM module 

The Complex LSTM module consists of two stacked Complex 
LSTM, each with a hidden state count of 384. System 1, pro-
posed in this paper, uses a standard CLSTM, while System 2 
employs a bi-directional CLSTM. The rest of the structure re-
mains the same for both systems. 

Figure 3 illustrates the structure of the output module. The 
output module consists of FNN and activation function. The 
input channel dimension size corresponds to the output dimen-
sion of the CLSTM module (i.e., the number of hidden states), 
while the output channel dimension size corresponds to the num-
ber of event categories (i.e., 27). The module has two output 
heads: a strongly labeled output and a weakly labeled output. The 
strongly labeled output head includes an FNN layer followed by 
a Sigmoid activation function, with the output time dimension 
size matching the number of frames. The weakly labeled output 
head includes an FNN layer, a Softmax activation function, and 
an attention layer, with the output time dimension size being one. 
The strong output indicates the possible sound events and corre-
sponding start and end times for a segment of audio, while the 
weak output gives only the possible events for a segment of 
audio. 

 
Figure 3: Structure of the output module. 

2.3. System processing flow 

The BEATs model was pre-trained on AudioSet-2M[3] and was 
not fine-tuned in the experiments reported here; it was solely 
used for embedding extraction. The network architecture for both 
the teacher model and the student model is CCRN-SED. The 
teacher model initially has the same parameters as the student 
model. Subsequently, parameters of the teacher model are expo-
nential moving average (EMA) of the parameters of the student 
model, which can smooth parameter fluctuations and thus im-
prove the stability of the model[2]. Figure 4 illustrates the overall 
processing flow of the system. 

 
Figure 4: The overall processing flow of the system. 

First, the strongly labeled data and the weakly labeled data are 
passed through the student model to obtain the strongly labeled 
and weakly labeled predictions, which are used to compute su-
pervised loss. Next, the unlabeled data is passed through the 
teacher model and the student model to obtain the prediction 
results for both types of labels, which are used to compute self-
supervised loss. Third, the parameters of the student model are 
updated by backpropagation. Finally, the parameters of the 
teacher model are updated by EMA. 

3. EXPERIMENT 

3.1. Experimental Dataset 

The experiments were conducted with the official dataset provid-
ed by DCASE, which includes the DESED dataset[11] and the 
MAESTRO Real dataset[12]. DESED consists of two parts: the 
audio sample recorded in domestic environment and the sample 
synthesized by using Scaper. MAESTRO Real consists of audio 
samples from different realistic acoustic scenes. The dataset is 
divided into development set and evaluation set. The develop-
ment training set includes four subsets: weakly labeled training 
set, unlabeled in-domain training set, synthetic strongly labeled 
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set, soft labeled training set. It contains a total of 35,582 mono 
audio instances of 10 seconds with 27 classes of sound events. 
The development validation set and test set contain 3,407 and 
4,642 instances, respectively. The evaluation set contains 2,200 
instances. 

3.2. Experimental Settings 

The data is downsampled to 16kHz and extracted by Conv STFT 
to obtain a complex spectrogram with a frame length of 128ms 
and a frame shift of 16ms. 

We use an RTX 4090 D for our experiments. System 1 and 
System 2 have epochs of 200 and 220, respectively. The batch 
size is set to 30, and the optimizer is Adam with β1=0.9 and 
β2=0.999. The learning rate tuning strategy is Exponential 
Warmup, which reaches a maximum value of 0.001 when epoch 
is 50, then maintains that learning rate, and starts to decrease 
when epoch is 100. Supervised loss and self-supervised loss are 
BCELoss and MSELoss, respectively. Data augmentation is 
performed using soft mixup, and the dropout rate is set to 0.2. 

3.3. Experimental Results 

We use PSDS1 and mean pAUC as the evaluation metrics. The 
experimental results of the different systems on the development 
test set are shown in Table 1. Official Baseline[13] and CCRN-
SED use the same BEATs pretrained model, data augmentation 
and semi-supervised strategy. The only difference is that Base-
line uses the CRNN architecture. CCRN-SED-2 achieves the best 
PSDS1 score, while official Baseline achieves the highest mean 
pAUC. CCRN-SED-2 has better detection accuracy and robust-
ness in general, while Baseline has better detection performance 
in scenarios where false alarm rate need to be controlled. 

Tabel 1: Results of different systems on the development test set 
System PSDS1 mean pAUC 
Baseline 0.490 ± 0.004 0.730 ± 0.007 

CRNN-SED-1 0.494 ± 0.005 0.655 ± 0.005 
CRNN-SED-2 0.508 ± 0.003 0.693 ± 0.007 

The total number of parameters and the amount of computa-
tion (i.e., MACs) for the different systems are shown in Table 2. 
CCRN-SED-2 has the smallest Params, while official Baseline 
has the lowest MACs. The reason of CCRN having high MACs 
with low Params is that the complex module contains the struc-
ture of parameter sharing, such as a real CNN or image CNN that 
needs to operate twice with both real input and image input. 

Tabel 2: Complexity of different systems 
System Params MACs 
Baseline 1.8M 1.0360G 

CRNN-SED-1 1.4M 20.822G 
CRNN-SED-2 1.1M 20.730G 

 

4. CONCLUSION 

In this report, we described our systems used in task 4 of DCASE 
2024. The system is mainly based on CCRN, which can process 
both amplitude and phase information. We try to explore whether 
complex information can help the system to perform the sound 
event detection task better. Besides, the system uses BEATs 

pretrained model and Mean Teacher training strategy. The 
PSDS1 and mean pAUC of the final system on the development 
test set are 0.508 and 0.693. 
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