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ABSTRACT

This report presents our submission for Task 1: Data-Efficient
Low-Complexity Acoustic Scene Classification in the DCASE2024
challenge. Drawing inspiration from the top-ranked system in the
2023 edition, our approach is based on a Knowledge Distillation
training routine: we employ ensembles of fine-tuned CP-ResNet
and PaSST as teachers for each subset, with a modified version of
the CP-Mobile baseline model serving as the student. A key im-
provement in our methodology is pre-training the student on both
AudioSet and the corresponding training subset before knowledge
distillation, which significantly enhances its performance. To im-
prove device generalization, we use various data augmentation tech-
niques, including Freq-MixStyle, Device impulse response aug-
mentation, FilterAugment, frequency masking, and time rolling.
Our results demonstrate substantial improvements in test accuracy
compared to the baseline system, validating the effectiveness of our
approach for each subset.

Index Terms— CP-Mobile, Knowledge distillation, CP-
ResNet, Device Impulse Response augmentation, Freq-MixStyle,
AudioSet pre-training, Acoustic scene classification, Frequency
masking, Time rolling

1. INTRODUCTION

Acoustic Scene Classification (ASC) systems aim to categorize au-
dio recordings into predefined scene classes. This field has gained
prominence through the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge which takes place annually
since 2016 [1]. In this report, we describe our submission for Task
1 of DCASE 2024 edition [2] which concerns urban acoustic scene
classification utilizing the TAU Urban Acoustic Scenes dataset [3].
The task has gradually evolved over the years [4, 5] to address real-
world problems such as device mismatch or low-complexity con-
straints, emphasizing model applicability to portable devices.

This year’s challenge introduces a new scenario with limited la-
beled data availability. Participants must design systems that main-
tain high prediction accuracy with limited training data across five
scenarios: 5%, 10%, 25%, 50%, and 100% of the full training
set. Systems must be trained solely on the specified subset and al-
lowed external resources [6]. Furthermore, the rules specify a max-
imum of 128 kB of parameters and a ceiling of 30 million multiply-
accumulate operations (MMACs) per inference of a one-second au-
dio clip.

Our approach builds on insights from the previous year’s top-
ranked system [7]. It involves training a CP-Mobile [7] model by
distilling the knowledge [8] from a CP-ResNet [9] and PaSST [10].

We utilize Device Impulse Response augmentation [11], FilterAug-
ment [12] and Freq-MixStyle [13] to handle generalization to un-
seen devices. Additionally, we pre-trained the student on AudioSet,
leading to a substantial performance improvement.

2. FEATURE EXTRACTION & DATA AUGMENTATION

2.1. Dataset

The development dataset employed for this challenge is the
TAU Urban Acoustic Scenes 2022 Mobile development dataset
(TAU22) [3]. This dataset encompasses recordings from 12 Eu-
ropean cities, capturing 10 distinct acoustic scenes using 4 real de-
vices. Additionally, synthetic data for 11 mobile devices was gen-
erated based on the original recordings. The development set is
restricted to audio recorded by three real devices (A, B, and C) and
six simulated devices (S1-S6).

TAU22 retains the same content as the TAU Urban Acoustic
Scenes 2020 Mobile development dataset (TAU20) [14], but the 10-
second audio clips from TAU20 have been segmented into 1-second
fragments, resulting in ten times more files. This segmentation sig-
nificantly increases the difficulty of the prediction task. The dataset
comprises 230,350 audio clips, each with a duration of 1 second
and a label indicating the acoustic scene. All audio files are in a
single-channel, 44.1 kHz, 24-bit format.

2.2. Preprocessing

Audio for the CP-Mobile model is resampled to 32 kHz and pro-
cessed to Mel spectrograms with 256 frequency bins. The Short
Time Fourier Transformation (STFT) uses a window size of 96 ms
and a hop size of 16 ms. As observed by the authors of the top-
ranked system of 2023 [7], increasing the window size from 64
ms to 96 ms and employing a 4096-point Fast Fourier Transform
(FFT) results in a marginal performance improvement compared to
the configuration detailed in [4].

For the teacher models, we adhered to the AudioSet [15] pre-
training configuration of PaSST [10]. This involved utilizing a win-
dow size of 25 ms and a hop size of 10 ms to generate Mel spec-
trograms with 128 frequency bins. In the case of CP-ResNet [9],
the audio was downsampled to 22.05 kHz. Mel spectrograms are
computed using a hop size of approximately 9 ms, a window size of
23 ms, and 256 Mel bins.
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2.3. Data augmentations

In order to mitigate overfitting, especially with a relatively small
dataset of 5% split, we implemented a diverse range of data aug-
mentation techniques. These augmentations played a crucial role in
enhancing the generalization capability of our models.

• SpecAugment [16] is a widely adopted technique for audio
data augmentation that applies time and frequency masking to
input spectrograms. In our experiments, frequency masking
was found to be particularly beneficial. We applied masking
up to 48 frequency bins, which significantly improved model
robustness.

• FilterAugment [12] is a more sophisticated variant of
SpecAugment. Unlike the traditional masking approach, Fil-
terAugment applies frequency-specific weighting to simulate
the effects of various impulse responses encountered in differ-
ent environments.

• Freq-MixStyle [13] is an adaptation of the MixStyle augmen-
tation [17] adjusted for audio data. MixStyle enhances model
robustness to domain shifts by normalizing input features us-
ing the mean and standard deviation of other samples within
the same batch, leveraging the observation that instance-wise
statistical moments encapsulate style information [18]. Freq-
MixStyle focuses on the frequency dimension, which is crucial
for audio data, and we apply it to a batch with a probability of
70%. Mixing coefficients are drawn from a Beta distribution
with α = 0.6.

• Device Impulse Response (DIR) augmentation [11] involves
convolving the input recordings with impulse responses from
66 different vintage microphones. This technique is designed
to enhance the model’s ability to generalize across recordings
from various devices. We apply DIR augmentation to a sample
with a probability of 70%.

• Time-rolling involves shifting a prefix/suffix of a randomly
sampled length (up to 0.1 seconds) to the other end of the in-
put signal. This augmentation, computed in the time domain,
helps to simulate variations in the temporal alignment of the
audio data.

Figure 1: Data preprocessing and augmentations

3. ARCHITECTURES

3.1. TEACHER MODELS: PaSST and CP-ResNet

Audio spectrogram transformer models, such as PaSST, excel in
capturing the global context of an audio clip due to their purely
self-attention-based architecture. Previous studies have demon-
strated that PaSST serves as an effective teacher model for low-
complexity CNNs [19]. The Patchout faSt Spectrogram Trans-
former (PaSST) [10] is a complex, self-attention-based model pre-
trained on AudioSet and comprising 85 million parameters. This
pre-trained model can be fine-tuned to achieve state-of-the-art per-
formance across multiple downstream tasks, including ASC. PaSST
models have consistently proven to be excellent teachers for low-
complexity CNNs [19].

Similarly, CP-ResNet [9], a receptive-field regularized CNN
(RFR-CNN), incrementally builds local features over a spatially re-
stricted area. CP-ResNet has shown significant success in ASC in
prior DCASE ASC challenges. By utilizing both PaSST and CP-
ResNet as teacher models, we seek to further diversify the predic-
tions within the ensemble, leveraging their unique strengths to im-
prove overall performance [11].

3.2. STUDENT MODEL: CP-Mobile

We use the default CP-Mobile architecture [7] provided as the base-
line system. Its architecture is described in Table 1.

Block Unbatched input shape Parameters
Input Convolution [1,256,65] 2,456
CPM-S Block 1 [32, 64, 17] 4,992
CPM-D Block 2 [64, 64, 17] 4,992
CPM-S Block 3 [32, 64, 17] 4,992
CPM-T Block 4 [32, 64, 9] 6,576
CPM-S Block 5 [56, 32, 9] 15,112
CPM-T Block 6 [56, 32, 9] 20,968
Final layer [104, 32, 9] 1,060

Table 1: Network architecture

The core technique of CP-Mobile is CPM block, a computa-
tionally efficient alternative for the classical convolutional layer.
Each CPM block consists of three stages: 1) Pointwise expansion
2) Depthwise convolution and 3) Pointwise projection (as depicted
in Figure 2). Each of those stages is implemented as a standard
covolutional block that includes Batch normalization and ReLU ac-
tivation.

The CPM blocks are categorized into three types:

1. Transition blocks (T): used to expand the channel dimension.
No residual connection is used.

2. Standard blocks (S): number of input and output channels is
the same. Residual connection is used.

3. Spatial downsampling blocks (D): number of input and out-
put channels is the same. Residual connection with strided
average pooling is used.
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Figure 2: Types of CPM blocks

The sequence of CPM blocks is preceded by two classical con-
volutional blocks (convolution, normalization, activation) and suc-
ceeded by a 2D convolution, batch normalization and adaptive av-
erage pooling. As the activation function, we use ReLU all across
our model.

4. KNOWLEDGE DISTILLATION

Knowledge distillation (KD) [8] is a proven technique for com-
pressing large, complex machine learning models (referred to as
teacher models) into smaller, more efficient models (referred to as
student models) while maintaining robust performance. The teacher
model is a large, high-performing model trained to achieve high
accuracy. It generates ”soft targets” using a temperature-adjusted
softmax function. These soft targets are probability distributions
over classes that convey nuanced class similarities beyond tradi-
tional hard labels. The temperature parameter (τ ) in the softmax
function controls the sharpness of these distributions, with higher
temperatures producing softer, more informative distributions. The
student model is trained using both the soft targets from the teacher
model and the standard one-hot encoded labels. This dual training
approach enables the student model to capture both explicit label
information and the more generalized, nuanced patterns present in
the teacher’s outputs. The training of the student model employs a
combination of two loss (as detailed in Equation 2): the hard label
loss (Ll) and the distillation loss (Lkd). The hard label loss (Ll)
typically uses cross-entropy loss, while the distillation loss (Lkd)
is computed as the Kullback-Leibler (KL) divergence between the
teacher’s and student’s outputs.

λ is a weight that balances the contributions of the hard label
loss and the distillation loss. The distillation loss Lkd is defined as:

LDIST = DKL(qstudent∥qteacher) (1)

qstudent and qteacher are the soft targets of the student and teacher
models, respectively. This balance is crucial to ensure that the stu-
dent model learns both the precise labels and the generalized knowl-
edge from the teacher model.

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (2)

where zS and zT are the logits of the student and teacher mod-
els, respectively, and y represents the hard labels. The factor τ2

ensures that the magnitudes of the gradients produced by the soft
targets scale appropriately, maintaining the relative contributions of
the hard and soft targets even when the temperature used for distil-
lation is modified.

A common strategy to enhance KD is ensembling the teacher
models [11]. An ensemble approach often results in more robust
and generalized student models by integrating diverse insights from
multiple teachers. The teacher outputs are usually aggregated via
averaging. However, in our experiments, the Bayesian Ensemble
Averaging (BEA) [20] which replaces averaging with probabilistic
sampling, turned out to work slightly better.

5. PRE-TRAINING OF THE STUDENT MODEL

Before passing the student model to knowledge distillation, we sub-
jected it to two pre-training procedures, first on the AudioSet and
the second on the respective train split.

AudioSet, comprising over 2 million human-labeled 10-second
sound clips, offers a diverse and comprehensive resource for train-
ing and evaluating audio recognition models across 527 distinct
sound categories [15]. For pre-training the CPM student model on
it, we use the training routine described in [21].

Additionally, we train the student model on the corresponding
training split and only after that we pass it into KD.

The effectiveness of such pre-training has been demonstrated
throughout our experiments. Utilizing a pre-trained student signif-
icantly enhances the performance of the student model during the
KD phase. This boost can be attributed to the fact that the pre-
trained student model already possesses a foundational understand-
ing of the data distribution. When the knowledge from one or more
teacher models is distilled into such a student, the inherent data fa-
miliarity accelerates the adaptation and integration of new knowl-
edge. This rapid assimilation allows the student to more effectively
mimic the teacher models. Moreover, the existing competence of
the pre-trained student may enable it to not only replicate but po-
tentially surpass the performance of the teacher models.

6. EXPERIMENTS

6.1. Experimental setup

We trained our models using the provided train and validation splits.
We aim to have every improvement compared to the baseline perfor-
mance supported by a substantial increase in average performance
in at least four experiments. Unfortunately, this was not always
feasible because of the high computational demands of some of the
used techniques (especially knowledge distillation with PaSST) and
our limited computing power.

6.2. Knowledge Distillation

For knowledge distillation, we utilized an ensemble of teacher log-
its, aggregating the logits from four CP-ResNet teachers and in the
case of System 2 also a PaSST. The distillation process involved
setting the temperature parameter τ to 2 to soften the logits and
applying a distillation loss with a weight of 0.02 (see Equation 2).
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6.3. Training procedure

To address the challenge of generalization with a limited dataset, we
leveraged pretraining on AudioSet for both the teacher and student
models.

Each CPM model was initially pretrained on AudioSet and then
fine-tuned using our available subset with specific augmentations.
The training regime included training the models for 150 epochs
with a batch size of 256. We utilize the Adam optimizer [22] and a
cosine learning rate scheduler was employed to dynamically adjust
the learning rate during training.

We use a weight decay of 0.001, frequency masking of up to
48 frequency points, time rolling of up to 0.1 seconds and linear
FilterAugment augmenting from 3 to 6 mel bands in the range of
-6 to 6 dB. Some of the hyperparameters were, however, adjusted
for different architectures and training setups. Table 2 lists their
configuration:

Training lr DIR p FMS p FMS α
CPM 0.005 0.6 0.6 0.4
CP-ResNet 0.001 0.7 0.7 0.6
PaSST 0.00001 0.6 0.4 0.4

Table 2: Varying hyper-parameters for different training setups (for
student model we use the same hyperparameters both for pertaining
on TAU22 and for KD)

6.4. Submissions

Based on our results we put together the following three submission
systems:

1. S1: this system contains only techniques that have been
consistently demonstrated to yield good results: DIR, Freq-
MixStyle, frequency masking, time rolling, ensemble of
three CP-ResNets (aggregated using BEA) as a teacher and
pre-training the student model on both AudioSet and on the
corresponding train split before passing it to knowledge dis-
tillation.

2. S2: This system is specialized for the largest splits and adds
PaSST (pre-trained on AudioSet and then finetuned on our
data) to the teacher ensemble. For CP-ResNets, we used
BEA and applied mean aggregation to integrate the results
of BEA and the PaSST logits. Other than that, this system is
identical with S1.

3. S3: this system uses classical averaging of teacher logits in
KD (i.e. no BAE). Other than that this system is identical
with S1.

In the Table 3 and in the Figure 3, we show our final validation
accuracies of each of the systems for each of the splits:

System 5% 10% 25% 50% 100%
Baseline 42.4 45.29 50.29 53.19 56.99
S1 49.70 53.73 57.48 60.20 62.15
S2 50.46 53.12 56.81 59.23 60.58
S3 49.51 53.50 56.85 59.60 61.46

Table 3: Final results

Figure 3: Validation accuracies for different systems and subset

7. CONCLUSION

In this report, we presented our approach for Task 1: Data-Efficient
Low-Complexity Acoustic Scene Classification in the DCASE2024
challenge. Inspired by the DCASE2023 winning model [7], our
method leveraged ensembles of fine-tuned CP-ResNet and PaSST
as teacher models, with the CP-Mobile model serving as the student.
A critical enhancement in our methodology was the pre-training of
the baseline model prior to down-stream training on the respective
Task 1 data split, which significantly boosted its performance.

To address the challenges of limited availability of training data
and generalization across recording devices, we employed a variety
of data augmentation techniques. These included Freq-MixStyle,
Device Impulse Response (DIR) augmentation, FilterAugment, fre-
quency masking, and time rolling. These augmentations played a
vital role in enhancing the robustness and generalization capability
of our models.

As shown in Table 3, our experimental results demonstrated
substantial improvements in test accuracy compared to the baseline
model.
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[10] K. Koutini, J. Schlüter, H. Eghbal-zadeh, and G. Widmer, “Ef-
ficient training of audio transformers with patchout,” in In-
terspeech 2022, 23rd Annual Conference of the International
Speech Communication Association, Incheon, Korea, 18-22
September 2022, H. Ko and J. H. L. Hansen, Eds. ISCA,
2022, pp. 2753–2757.

[11] T. Morocutti, F. Schmid, K. Koutini, and G. Widmer, “Device-
robust acoustic scene classification via impulse response aug-
mentation,” in 31st European Signal Processing Conference,
EUSIPCO 2023, Helsinki, Finland, September 4-8, 2023.
IEEE, 2023, pp. 176–180.

[12] H. Nam, S. Kim, and Y. Park, “Filteraugment: An acoustic
environmental data augmentation method,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2022, Virtual and Singapore, 23-27 May 2022.
IEEE, 2022, pp. 4308–4312.

[13] B. Kim, S. Yang, J. Kim, H. Park, J. Lee, and S. Chang,
“Domain generalization with relaxed instance frequency-wise
normalization for multi-device acoustic scene classification,”
in Interspeech 2022, 23rd Annual Conference of the Inter-
national Speech Communication Association, Incheon, Ko-
rea, 18-22 September 2022, H. Ko and J. H. L. Hansen, Eds.
ISCA, 2022, pp. 2393–2397.

[14] T. Heittola, A. Mesaros, and T. Virtanen, “TAU Urban
Acoustic Scenes 2020 Mobile, Development dataset,” Mar.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.
3670167

[15] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio

set: An ontology and human-labeled dataset for audio events,”
in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2017, New Orleans, LA, USA,
March 5-9, 2017. IEEE, 2017, pp. 776–780.

[16] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data aug-
mentation method for automatic speech recognition,” in In-
terspeech 2019, 20th Annual Conference of the International
Speech Communication Association, Graz, Austria, 15-19
September 2019, G. Kubin and Z. Kacic, Eds. ISCA, 2019,
pp. 2613–2617.

[17] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain gener-
alization with mixstyle,” in 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

[18] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance
normalization: The missing ingredient for fast stylization,”
CoRR, vol. abs/1607.08022, 2016.

[19] F. Schmid, S. Masoudian, K. Koutini, and G. Wid-
mer, “Knowledge distillation from transformers for low-
complexity acoustic scene classification,” in Proceedings of
the 7th Workshop on Detection and Classification of Acous-
tic Scenes and Events 2022, DCASE 2022, Nancy, France,
November 3-4, 2022, M. Lagrange, A. Mesaros, T. Pellegrini,
G. Richard, R. Serizel, and D. Stowell, Eds. Tampere Uni-
versity, 2022.

[20] J. Xu, S. Li, A. Deng, M. Xiong, J. Wu, J. Wu, S. Ding, and
B. Hooi, “Probabilistic knowledge distillation of face ensem-
bles,” in IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023. IEEE, 2023, pp. 3489–3498.

[21] F. Schmid, K. Koutini, and G. Widmer, “Efficient large-scale
audio tagging via transformer-to-cnn knowledge distillation,”
in IEEE International Conference on Acoustics, Speech and
Signal Processing ICASSP 2023, Rhodes Island, Greece, June
4-10, 2023. IEEE, 2023, pp. 1–5.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. Le-
Cun, Eds., 2015.


