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ABSTRACT

To tackle sound event detection (SED) task, we propose fre-
quency dependent networks (FreDNets), which heavily leverage
frequency-dependent methods. We apply frequency warping and
FilterAugment, which are frequency-dependent data augmentation
methods. The model architecture consists of 3 branches: audio
teacher-student transformer (ATST) branch, BEATs branch and
CNN branch including either partial dilated frequency dynamic
convolution (PDFD) or squeeze-and-Excitation (SE) with time-
frame frequency-wise SE (tfwSE). To train MAESTRO labels with
coarse temporal resolution, we apply max pooling on prediction for
the MAESTRO dataset. Using best ensemble model, we apply self
training to obtain pseudo label from DESED weak set, DESED un-
labeled set and AudioSet. AudioSet labels are filtered to focus on
high-confidence pseudo labels and AudioSet pseudo labels are used
to train on DESED labels only. We used change-detection-based
sound event bounding boxes (cSEBBs) as post processing for en-
semble models on self training and submission models.

Index Terms— frequency dynamic convolution, audio pre-
trained models, coarse prediction pooling, label filtering, sound
event bounding boxes

1. INTRODUCTION

In this work, we address the problem of sound event detection
(SED) with heterogeneous datasets, including Domestic Environ-
ment Sound Event Detection (DESED) and Multi-Annotator Es-
timated STROng labels (MAESTRO) [1, 2, 3]. Since SED is a
very delicate task which requires time localization in addition to
class information, the difference between two datasets must be care-
fully addressed. While DESED uses hard labels with fine tempo-
ral resolution (base unit of one millisecond) and includes ten tar-
get sound events those occur in domestic environment, MAESTRO
uses soft labels representing confidence with coarse temporal reso-
lution (base unit of one second) and includes seventeen target sound
events those occur in outside environments. There are only few
target sound events overlapping. Though the target sound events
from one dataset might exist in the other dataset, we cannot know
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this since they are not labeled. This arouses the problem of po-
tentially missing labels [1]. To tackle this problem, DCASE2024
Challenge Task 4 baseline is designed to train both datasets using
single model architecture to output for twenty seven classes, while
masking the classes from one dataset when training for data from
the other dataset [1].

In this work, our primary approach is to build strong classi-
fier that works on both datasets. To achieve this, we applied two
frequency-dependent data augmentations: frequency warping and
FilterAugment [4, 5]. Then, we applied advanced variants of fre-
quency dynamic convolution (FDY conv) to CNN branch of the
baseline [6, 7, 8]. We also used squeeze and excitation (SE) with
time-frame frequency wise SE (tfwSE) to CNN branch [9]. In addi-
tion to BEATs branch, we added audio teacher student transformer
(ATST) branch to form three-branched models consisting of ATST
branch, BEATs branch and CNN branch [4, 10, 11]. Then, in or-
der to match the granularity of strong prediction and MAESTRO
strong labels, we pooled predictions to train with coarse MAESTRO
label. Since frequency-dependent methods are heavily used. we
call above network architecture as Frequency Dependent Networks
(FreDNets). We used change-detection-based sound event bound-
ing boxes (cSEBBs) as post processing [12]. With ensemble of
FreDNets post-processed by cSEBBs, we produced pseudo labels
on AudioSets, and used them to train new FreDNets [13].

The main contributions of this paper are as follows:

1. Proposed Frequency dependent networks (FreDNets) heav-
ily utilizes frequency-dependent methods to outperform the
baseline by 15.1% without ensemble.

2. Proposed coarse prediction pooling harmonizes the temporal
resolution difference between the model and label.

3. Partial dilated frequency dynamic convolution (PDFD conv)
used in FreDNets are lighter than FDY conv or DFD conv
and provides various variant models thus advantageous upon
ensemble.

2. METHODS

2.1. Frequency-Dependent Data Augmentations
In addition to mixup applied in the baseline [1, 14], we added fre-
quency warping and FilterAugment [4, 5]. The sequence of opera-
tion is as follows: mixup, frequency warping then FilterAugment.
Frequency warping is random resize crop applied only along fre-
quency dimension to zoom into frequency dimension with random
proportion. As it also works as frequency shift, we did not apply
additional frequency shift. Then, we applied linear type FilterAug-
ment with dB range from -3 dB to +3 dB. This is narrower range
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Figure 1: An illustration of partial dilated frequency dynamic con-
volution. It involves a dynamic DFD conv branches and a static 2D
convolution branch.

compared to the setting in the original paper [5]. FilterAugment
applies random weights over different frequency ranges to simulate
different acoustic environments. Data augmentation is only applied
to CNN branch as shown at the top of Fig. 2, because the other two
branches are not trainable. Since frequency dependency is an im-
portant issue in SED, these two methods showed performance gain
upon simultaneous application.

2.2. Frequency-Dependent CNN Methods
To further enhance the capacity of the network, CNN and RNN
channels are doubled. Either variants of frequency dynamic con-
volution (FDY conv) or squeeze-and-excitation (SE) to make CNN
modules to leverage frequency-dependent attention methods.

FDY conv applies frequency-adaptive convolution kernel to
release translational equivariance along frequency axis of time-
frequency features [6]. To lighten FDY conv, we applied partial fre-
quency dynamic convolution (PFD conv) [8]. To diversify the basis
kernels, we applied dilated frequency dynamic convolution (DFD
conv) to PFD conv to obatain lighter and diverse version of FDY
conv. We refer to this method as partial dilated frequency dynamic
convolution (PDFD conv), which is illustrated in Fig. 1. Using dif-
ferent dilation sizes to PDFD conv resulted in various models which
are advantageous on model ensemble [15]. While multi-dilated fre-
quency dynamic convolution (MDFD conv) yields in the best per-
formance, we used PDFD since it offers best cost-performance bal-
ance considering training time [8]. In addition to PDFD convs, we
also used SE with time-frame frequency-wise SE (tfwSE) for model
variety upon ensemble [9, 15].

2.3. Transformer-based Pre-trained Audio Models
In addition to CNN branch, two transformer-based pre-trained au-
dio models are used: BEATs and ATST. Frame-wise feature of
BEATs and ATST-frame are used to optimally enhance SED which
needs to give frame-wise predictions. Embeddings extracted for
both methods are pooled into same frame size as output by CNN
module output, then concatenated with the output from CNN mod-
ule along channel dimension, and then processed by fully connected
layers along channel dimension. Then the output is fed to RNN
module. Note that since transformer-based Audio models divide
mel spectrogram into patches and then apply positional encoding to
the patches, they implicitly apply frequency-dependent processing.
Thus two audio models can be regarded frequency-dependent meth-
ods. Fine tuning of ATST is not used in this work as it negatively
affects MPAUC on MAESTRO [4].

2.4. Coarse Prediction Pooling
In order to address the different temporal resolution of DESED and
MAESTRO, we applied coarse prediction pooling on MAESTRO.

Table 1: Components models of ensemble models. 1/8 denotes that
1/8 of PFD conv or PDFD conv output channel is from FDY conv
or DFD conv. Sd, ds and st implies seed, dilation sizes and self
training. For model names, CRNN is omitted for brevity.

ensemble models
1 PFD(1/8), PFD(1/8, sd=2),

PFD(1/8, sd=12), PFD(1/8, sd=16),
PFD(1/8, sd=27), PFD(1/8, sd=34),

PDFD(1/8, ds=1122), PDFD(1/8, ds=1133),
PDFD(1/8, ds=2233), PDFD(1/8, ds=1123),
PDFD(1/8, ds=1223), PDFD(1/8, ds=1233)

2 PFD(1/8), PFD(1/8, sd=16),
PDFD(1/8, ds=1122), PDFD(1/8, ds=1133),
PDFD(1/8, ds=1123), PDFD(1/8, ds=1223),

PDFD(1/8, ds=1233),
st-PFD(1/8), st-PFD(1/8, sd=2),

st-PFD(1/8, sd=12), st-SE+tfwSE,
st-PDFD(1/8, ds=1122), st-PDFD(1/8, ds=1123),
st-PDFD(1/8, ds=1223), st-PDFD(1/8, ds=1233)

3 PFD(1/8), PFD(1/8, sd=16), SE+tfwSE,
PDFD(1/8, ds=1122), PDFD(1/8, ds=1133),
PDFD(1/8, ds=1123), PDFD(1/8, ds=1223),

PDFD(1/8, ds=1233),
st-PFD(1/8), st-PFD(1/8, sd=2),

st-PFD(1/8, sd=12), st-PFD(1/8, sd=27),
st-SE+tfwSE,

st-PDFD(1/8, ds=1122), st-PDFD(1/8, ds=1123),
st-PDFD(1/8, ds=1223), st-PDFD(1/8, ds=1233),

While FreDNets’ predictions have temporal resolution of 64ms per
frame (156 frames for 10 seconds), MAESTRO label has temporal
resolution of 1s per frame (10 frames for 10 seconds). To make
fine predictions into coarse predictions, we apply max pooling on
FreDNets’ MAESTRO prediction. To be more specific, we zero-
padded 2 frames before and after the prediction and max pooled
with filter size and stride of 16. Although this is not precise pooling,
this choice was made to quickly and simply implement the idea.

2.5. Sound Event Bounding Boxes
Polyphonic sound detection score (PSDS) applies various thresh-
olds to the SED prediction to obtain threshold-independent evalua-
tion values [16, 17]. However, as threshold differs, onset and offset
of sound events also varies. To make onset and offset of sound
events independent of the thresholds, sound event bounding boxes
(SEBBs) are proposed to combine confidence values with very fine
onset and offset values into representative confidence, onset and
offset values [12]. In this work, change-detection-based SEBBs
(cSEBBs) are used.

2.6. Self Training using AudioSet
To obtain pseudo labels on DESED weak set, DESED unlabeled
set and AudioSet, we used ensemble of FreDNet using PDFD-CNN
modules with varying dilation size sets, SE+tfwSE-CNN and PFD-
CNN with varying seeds and then applied cSEBBs [15, 18]. As
DESED weak set is given with weak labels, pseudo label for weak
set is masked with given weak labels as in [19]. Since AudioSet has
inconsistent label quality, we applied self training on whole dataset
to obtain confidence from our ensemble FreDNet. For AudioSet,
we filtered data files having pseudo label values (confidence) above
0.7 on 27 target events to focus on labels with high confidence. we
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Figure 2: An illustration of framework for training and self training FreDNets.

discarded event labels with confidence value below 0.01 to reduce
pseudo label metadata size, and removed the files of which events
above 0.7 are only composed of subset of (speech, people talking,
children voices) to reduce the data imbalance toward speech. The
count of filtered AudioSet files is 153,977.

Upon use of pseudo label, both hard label obtained by threshold
of 0.5 and soft label are used to train SED model on AudioSet data.
For hard label, binary cross entropy (BCE) loss is used and for soft
label, mean square error (MSE) loss is used as shown in red dashed
line box in Fig. 2. Only 10 target sound events for DESED are
trained using filtered AudioSet as it degraded MPAUC when trained
on MAESTRO target sound events, although it was meant to train
on 17 target sound events in MAESTRO as well.

2.7. Ensemble
Ensemble model averaged predictions from various models. To
maximize the effect of ensemble, we used different models includ-
ing PFD-CRNN, PDFD-CRNN with different dilation size sets, and
SE+tfwSE-CRNN, and PFD-CRNN with different seeds. For each
model setting, the student and teacher models with the best sum
score (PSDS1+MPAUC) are used for ensemble. The model com-
binations used for each ensemble setting is shown in Table 1. En-
semble 1 is used to extract pseudo labels from AudioSet. Ensemble
2 and 3 are used for DCASE Challenge submission. While PFD-

CRNNs with different seeds are generally worse than models with
seed of 42, models with different seeds do help enhancing ensemble
performance.

3. EXPERIMENTAL SETTINGS

3.1. Implementation Details
DESED and MAESTRO processed to be 10 seconds clip with
16kHz sampling rate are used in this work [1, 3, 20]. The network
is composed of three-branched ATST-BEATs-CNN modules which
are then fed to RNN module and Fully Connected layers as shown
in Fig. 2. The Mean Teacher method is employed to train FreD-
Nets using the DESED unlabeled set [20, 21]. Binary cross entropy
(BCE) loss is used to train strong prediction for DESED strong set
and its strong label, weak prediction for DESED weak set and its
weak label, and strong prediction of MAESTRO and its soft label.
Note that strong prediction goes through coarse label prediction be-
fore the loss function to match the granularity of prediction and la-
bel. For consistency loss for strong and weak predictions of DESED
sets, mean square error (MSE) loss is used. For pseudo labels for
DESED weakly labeled set, unlabeled set and AudioSet, both BCE
and MSE losses are used. Default seed is set to 42. GPU used for
training is NVIDIA RTX A6000. For post-processing, we use either
cSEBBs or a median filter as reported in Table 2. The median filter
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Table 2: Performance of FreDNets.
models pre-trained models post-processing self training PSDS1 MPAUC sum # submission

Baseline [1] BEATs median filter - 0.520 0.637 1.157 -
PFD-CRNN(1/8) ATST + BEATs median filter - 0.516 0.775 1.293 -

PFD-CRNN(1/8, sd=2) ATST + BEATs median filter - 0.502 0.766 1.268 -
PFD-CRNN(1/8, sd=12) ATST + BEATs median filter - 0.514 0.765 1.279 -
PFD-CRNN(1/8, sd=16) ATST + BEATs median filter - 0.514 0.772 1.286 -
PFD-CRNN(1/8, sd=27) ATST + BEATs median filter - 0.514 0.763 1.277 -
PFD-CRNN(1/8, sd=34) ATST + BEATs median filter - 0.508 0.769 1.276 -
PDFD-CRNN(1/8, 1122) ATST + BEATs median filter - 0.519 0.773 1.292 -
PDFD-CRNN(1/8, 1133) ATST + BEATs median filter - 0.523 0.767 1.290 -
PDFD-CRNN(1/8, 2233) ATST + BEATs median filter - 0.515 0.772 1.287 -
PDFD-CRNN(1/8, 1123) ATST + BEATs median filter - 0.518 0.776 1.294 -
PDFD-CRNN(1/8, 1223) ATST + BEATs median filter - 0.526 0.772 1.298 -
PDFD-CRNN(1/8, 1233) ATST + BEATs median filter - 0.518 0.774 1.292 -

SE+tfwSE-CRNN ATST + BEATs median filter - 0.507 0.773 1.280 -
Ensemble 1 ATST + BEATs median filter - 0.527 0.790 1.317 -
Ensemble 1 ATST + BEATs cSEBBs - 0.577 0.790 1.367 -

PFD-CRNN(1/8) ATST + BEATs median filter True 0.539 0.773 1.312 -
PFD-CRNN(1/8, sd=2) ATST + BEATs median filter True 0.534 0.766 1.300 -

PFD-CRNN(1/8, sd=12) ATST + BEATs median filter True 0.534 0.753 1.287 -
PFD-CRNN(1/8, sd=27) ATST + BEATs median filter True 0.531 0.750 1.287 -
PDFD-CRNN(1/8, 1122) ATST + BEATs median filter True 0.530 0.774 1.304 -
PDFD-CRNN(1/8, 1133) ATST + BEATs median filter True 0.535 0.761 1.296 -
PDFD-CRNN(1/8, 1123) ATST + BEATs median filter True 0.537 0.775 1.312 -
PDFD-CRNN(1/8, 1223) ATST + BEATs median filter True 0.533 0.772 1.305 -
PDFD-CRNN(1/8, 1233) ATST + BEATs median filter True 0.532 0.772 1.304 -

SE+tfwSE-CRNN ATST + BEATs median filter True 0.525 0.767 1.292 -
PFD-CRNN(1/8) ATST + BEATs cSEBBs True 0.551 0.773 1.324 1

PDFD-CRNN(1/8, 1123) ATST + BEATs cSEBBs True 0.557 0.775 1.332 2
Ensemble 2 ATST + BEATs median filter True 0.537 0.788 1.325 -
Ensemble 3 ATST + BEATs median filter True 0.536 0.789 1.325 -
Ensemble 2 ATST + BEATs cSEBBs True 0.575 0.788 1.363 3
Ensemble 3 ATST + BEATs cSEBBs True 0.574 0.789 1.363 4

refers to class-independent 7-frames-sized median filter.

3.2. Evaluation Metrics
True PSDS1 was used to evaluate SED performance on DESED
[16, 17]. While previous DCASE challenge task 4 used two types
of PSDS (PSDS1 favoring time localization and PSDS2 favoring
accurate classification), only PSDS1 is used in this year as PSDS2
is rather an audio tagging metric [12, 19]. For MAESTRO perfor-
mance evaluation, MPAUC is used [1]. We optimized the model
based on average score of PSDS1 + MPAUC on 4 independent
training runs. The scores reported in the table are from the mod-
els with best sum scores among 4 independent training runs within
each model setting.

4. RESULTS

The results are summarized in Table 2, highlighting the perfor-
mance improvements achieved by our proposed methods. As shown
in the results, PFD-CRNN and PDFD-CRNNs do not significantly
vary in their performance. However, as their roles differ from each
other, ensembling differently dilated PDFD-CRNNs results in de-
cent performance. Likewise, although slightly worse than PDFD-
CRNNs, SE-tfwSE-CRNN and PFD-CRNNs with different seeds
do help for ensemble. Final best score without ensemble model out-
performs the baseline by 15.1% and best score with ensemble out-

performs the baseline by 18.2%. While ensemble 1 model slightly
outperforms ensemble 2 and 3 those outperformed the baseline by
17.8%, submission was made with latter two as they contain self-
trained models thus are expected to retain better generalization ca-
pability.

5. CONCLUSION

In this study, we presented Frequency Dependent Networks (FreD-
Net) for SED. Our method leverages frequency-dependent data aug-
mentation techniques, such as frequency warping and FilterAug-
ment, and incorporates advanced convolutional and transformer-
based pre-trained models. Our experiments show that the pro-
posed FreDNet architecture, when combined with techniques like
partial dilated frequency dynamic convolution (PDFD), squeeze-
and-excitation (SE), and coarse prediction pooling, significantly
improves SED performance. The use of change-detection-based
Sound Event Bounding Boxes (cSEBBs) further enhances perfor-
mance by refining onset and offset predictions. The ensemble mod-
els, integrating various FreDNet settings, achieved substantial per-
formance gains over the baseline, with the best ensemble model out-
performing the baseline by 18.2%. Our approach shows promise for
robust SED in diverse environments, highlighting the effectiveness
of frequency-dependent methods and the importance of ensemble
strategies in improving model performance.
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