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ABSTRACT

This technical report describes the system we submitted to
DCASE2024 Task4: Sound Event Detection with Heterogeneous
Training Dataset and Potentially Missing Labels. Specifically, we
apply three main techniques to improve the performance of the of-
ficial baseline system. Firstly, We exploiting a dual-branch convo-
lutional recurrent neural network (CRNN) structure including the
main branch and auxiliary branch. We adopt an SCT strategy to
apply the self-consistency regularization in addition to the Mean
Teacher loss to maintain the consistency between the outputs of the
auxiliary and main branches. Secondly, a HTA module is designed
to aggregate the information at different temporal resolutions so that
the receptive fields of the network can be adjusted according to the
short-term and long-term correlation. Thirdly, several data augmen-
tation strategies are adopted to improve the robust of the network.
Experiments on the DCASE2024 Task4 validation dataset demon-
strate the effectiveness of the techniques used in our system.

Index Terms— Sound Event Detection, Heterogeneous
Dataset, data augmentation, consistency regularization

1. INTRODUCTION

Sound event detection (SED) is the task of detecting the categories
of sound events and the timestamps of their corresponding occur-
rence [1]. In this report, we utilize a self-consistency training
(SCT) strategy for semi-supervised SED, this method adopts a dual-
branch CRNN [2] structure, including the main branch and auxiliary
branch. The auxiliary branch assists the main branch in the form
of consistency regularization to train a model with better general-
ization performance [3]. Specifically, We implement the following
methods to improve the network performance:

(i) We propose a self-consistency training (SCT) strategy that
by adding auxiliary branches into the CRNN network and apply
self-consistency regularization in addition to the Mean Teacher [4]
loss.

(ii) A hierarchical temporal aggregation (HTA) module is de-
signed to aggregate the features of different temporal resolutions,
which are added to the main branch of CRNN, so sound events’
short-term and long-term correlations can be modeled by aggregat-
ing features of different time scales.

(iii) We utilized the Mixup [5], SpecAugment [6], Audio cut-
mix [7] [8], RandomLinearFader (RLF) [9] data augmentation to
improve the generalization capability of the detection system.

2. METHODS

Our network structure is based on the CRNN network of the
Baseline system [10] [11]. The feature extractor of CRNN is a stack
of 7 convolution layers and we adopt the FDY [12] instead of the
traditional convolution. The kernel size of each convolution layer
is(3,3). Each convolution block is followed by a gaussian error lin-
ear unit (GeLU) [13] activation and batch normalization (BN) [14].
Average pooling is performed after each block, 4-times reduce the
output time resolution of the CRNN model, and the frequency axis
is pooled to 1. Then the proposed HTA module is followed by the
feature extractor in the main branch, and its output is fed into the
bi-directional gated recurrent unit(Bi-GRU), fully connected layer
and Sigmoid to get a strong prediction and then a weak prediction of
10 acoustic events are obtained by Linear Softmax, and the feature
extractor output in the auxiliary branch is directly fed into Bi-GRU,
and and the weak prediction is finally obtained by attention Soft-
max. And we also design a Fusion module [15] to combine the la-
tent feature from extractor with embedding from pre-trained model
Beats as Fig.1 shown.

Inspired by clip-level consistency training [16], an auxiliary
branch is introduced after the feature extractor to improve the fea-
ture representation ability and classification generalization ability
of the CRNN network. This branch comprises Bi-GRU and classi-
fier and only computes the consistency loss with the CRNN main
branch. Therefore, the total loss consists of strong prediction loss,
weak prediction loss, the consistency loss of mean teachers, and the
consistency loss between the main branch with the auxiliary branch
output.

After feature extraction by FDY-CNN, the frequency dimension
is down-sampled to 1, so a feature is obtained. Inspired by the time
convolution network (TCN) in ConvT-Tasnet [17], we propose an
HTA module consisting of cascaded hierarchical TCN blocks. The
dilation factor d of TCN blocks increases exponentially, which in-
creases the temporal receptive field. Finally, the output features of
each TCN block are aggregated together through the aggregator to
obtain the total output.

3. DATA AUGMENTATION

We adopted the Mixup [5], SpecAugment [6], Audio cutmix [7]
[8], RLF [9] data augmentation methods to generate augmented
data. The Mixup method generates augmented data by getting the
weighted sum of the two pieces of data. While SpecAugment ran-
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Figure 1: Sound Event Detection pipeline.

domly mask out a continuous segment of the spectrum along the
time or frequency axis. Audio cutmix can alter the boundaries of
sound events and contextual information, encouraging the model
to learn more robust feature representations with limited context.
RLF involves randomly applying linear volume changes throughout
the entire audio clip to simulate variations in the position of sound
sources.

4. EXPERIMENTAL

4.1. Dataset

We conduct experimental evaluations on the DCASE2024 Task4
dataset1. The dataset cosistt of DESED dataset and Meastro Real,
where the DESED contains 1578 audio clips with weak labels,
10000 synthesized audio clips with strong labels and 3470 real au-
dio clips with strong labels as well as 14412 unlabeled audio clips,
and Meastro Real contains real-life recordings with a length of ap-
proximately 3 minutes each, recorded in a few different acoustic
scenes, the audio was annotated using Amazon Mechanical Turk,
with a procedure that allows estimating soft labels from multiple
annotator opinions.

4.2. Experimental setup

We choose the Adam optimizer with a learning rate of 0.0026, and
the total training epoch is 200. Each audio clip is resampled to 16
kHz. The log-mel spectrogram uses 2048 STFT windows with a
hop size of 256 and 128 Mel-scale filters, so the size of the input
features is 626×128. This features are normalized to zero mean and
unit variance before being fed into the network. The batch size is
set to 60. Each batch consists of 12 soft-labeled, 12 strongly-labeled
include 6 synthetic and 6 real strongly labeled, 12 weakly labeled,
as well as 24 unlabeled audio clips.All experiments were conducted
on a GeForce RTX TITAN GPU 24GB RAM.

4.3. Experimental result

The system’s result which we submitted is shown in Table 1, and
the Energy Consumption is shown in Table 2. The experimental
results show that our proposed method outperformance the baseline
on PSDS1 and PSDS1 (sed score).

1https://dcase.community/challenge2024/task-sound-event-detection-w
ith-heterogeneous-training-dataset-and-potentially-missing-labels

Table 1: The results of the system submitted.

Methods PSDS1 PSDS1 (sed score) mean pAUC

Baseline 2024 0.480 0.490 0.730
ours’ system 0.493 0.532 0.657

Table 2: The Energy Consumption of system submitted.

Methods train(kwh) test(kwh)

Baseline 2024 1.666 0.143
ours’ system 3.273 0.062
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