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ABSTRACT 

This technical report details our approach to Task 1: Low-Com-

plexity Acoustic Scene Classification for the DCASE 2024 chal-

lenge. We introduced a novel architecture, MofleNet, featuring 

shuffle channels and residual inverted bottleneck blocks. For the 

challenge submission, we ensemble this new model with CP-

ResNet. To enhance cross-device generalization performance, 

Freq-MixStyle and Device Impulse Response (DIR) augmentation 

are applied during training. To meet the constraint of keeping the 

model size under 128kB, both models are fine-tuned using Quan-

tization Aware Training to perform computations in 8-bit preci-

sion. This ensemble method achieved an average accuracy im-

provement of 6% on the TAU Urban Acoustic Scenes 2022 Mobile 

development dataset compared to the baseline model of DCASE 

2024 Task 1. 

 

Index Terms— MofleNet, CP-ResNet, Ensemble Learning, 

Quantization Aware Training, Device Impulse Response augmen-

tation, Freq-MixStyle 

1. INTRODUCTION 

In Task 1 of the DCASE’24 Challenge [1], Low-Complexity 

Acoustic Scene Classification (ASC), participants are required to 

design a system that accurately predicts scene labels for 1-second 

audio clips. In previous years, this task has presented well-known 

challenges, such as the mismatch between recording devices in the 

training and test sets, model complexity limits, and energy con-

sumption during training [2, 3]. In addition to strict complexity lim-

its on model size (128 kB) and multiply-accumulate operations (30 

million MACs), this year's edition introduces a new constraint: lim-

ited availability of labeled data, with only 50%, 25%, 10%, and 5% 

of the TAU Urban Acoustic Scenes 2022 Mobile development da-

taset available.  

 

Convolutional Neural Networks (CNNs) are well-established 

for tackling low-complexity ASC and have dominated the leader-

board in previous DCASE challenges [4, 5, 6, 7, 8]. Lightweight 

models like MobileNet [5], GhostNet [6], SepNet [7] and blueprint 

separable convolutions network [8] have been employed to address 

subsequent challenges. In the DCASE’23 Task 1 challenge, the 

rank-1 model utilized ensemble of 12 teacher models consisting of 

6 Patchout FaSt Spectrogram Transformer (PaSST) variants and 6 

variants of CP-ResNet [4] (DCASE’22 Task 1 Rank 1 model) to 

train a student model CP-mobile [5]. CP-Mobile's performance is 

heavily dependent on the number of channels in each CPM Block. 

One of the challenges with CP-Mobile is that reducing the model 

size often requires sacrificing accuracy. Another issue with CP-

Mobile is the MACs involved; scaling the model size down does 

not proportionately decrease the MACs. This presents a significant 

challenge in balancing model size, accuracy, and computational ef-

ficiency. Additionally, this year’s challenge requires participants to 

train the model on five different sizes of training sets. As noted in 

[1], training the teacher model on a 100% dataset to distill 

knowledge into a student model trained on a smaller dataset is not 

permitted. Therefore, if we use the same approach as the rank 1 

submission, we are required to train a total of 60 teacher models. 

This process is highly resource intensive.  

 

This technical report describes a novel design called MofleNet 

(MobileShuffleNet), which incorporates combination of channel 

shuffling and residual inverted bottleneck blocks to the CNN net-

work. This model was efficiently designed to meet the challenge 

requirements and overcomes the limitations of CP-Mobile. The re-

mainder of the report is structured as follows: Section 2 discuss the 

data preprocessing and augmentation. Model MofleNet is presented 

in section 3, Section 4 discuss the ensemble learning by combining 

MofleNet with CP-ResNet (DCASE’22 Task 1 Rank 1). Training 

setup, Quantization aware training, results and conclusions are dis-

cussed in the subsequent sections.  

2. DATA PREPROCESSING AND AUGMENTATION 

2.1. Preprocessing 

For MofleNet, we preprocess the raw 1D time domain audio sig-

nals sampled at 32 kHz and convert them to the 2D time-frequency 

(TF) domain using Short-Time Fourier transform (STFT). This en-

sures that both the temporal and spectral characteristics of the au-

dio data can be utilized for further analysis and processing. After 

the frequency domain conversion, we extracted Mel spectrogram 

corresponding to each audio clip using 256 Mel bands covering 

the audio frequency bandwidth up to16 kHz. These Mel spectro-

grams are used as input to MofleNet. For the STFT parameters, a 

window size of 96 ms with a hop size of 16 ms was considered. 

For CP-ResNet, the preprocessing settings are identical to 

MofleNet; however, a hop size of 23.4 ms is used.  
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2.2. Freq-MixStyle, Device Impulse Response Augmentation 

and Time Rolling 

Frequency MixStyle (FMS) is an approach that aims to leverage 

frequency-specific information in audio data. It mixes frequency-

wise statistics instead of channel-wise statistics in audio processing 

tasks [9]. FMS normalizes the frequency bands in a spectrogram 

and then denormalizes them with mixed frequency statistics of two 

spectrograms. FMS is applied to a batch with a probability speci-

fied by the hyperparameter p, and the mixing coefficient is drawn 

from a Beta distribution parameterized by α. 

 

66 freely available device impulse responses (DIRs) [10] from 

MicIRP [11] to augment the waveforms are used, like [5]. The 

characteristic frequency responses of the recording devices in 

MicIRP make them ideal for simulating a diverse range of record-

ing devices. DIR augmentation is controlled by the hyperparameter 

pDIR, which defines the probability of convolving a waveform with 

a DIR. 

 

We set hyperparameters to α=0.3, pfms = 0.4, and pDIR = 0.6 

for training MofleNe. For CP-ResNet, we used both FMS and DIR 

augmentation with hyperparameters α=0.4, pfms =0.8, and pDIR=0.4 

according to [5]. In addition, we randomly roll the waveform over 

time with a maximum shift of 125 ms when training both models. 

3. MOFLENET 

Inspired by the CP-Mobile [5] and ShuffleNet [12] models, we de-

signed a novel model called MofleNet. One well-known way to re-

duce model complexity in convolutional neural networks is by us-

ing grouped convolution. However, a downside of grouped convo-

lution is that the outputs from certain channels are derived from 

only a small fraction of input channels, limiting information ex-

change between these channels. To address this issue, we intro-

duced channel shuffle (refer to Figure 2) after the grouped convo-

lution, which increases the information flow between channel 

groups and helps in capturing more diverse and comprehensive fea-

tures. By promoting better mixing of information across different 

channel groups, it enables richer and more informative feature 

maps by fully relating the input and output channels [11]. This al-

lows us to reduce the number of parameters without significantly 

compromising information exchange between channels. 

 

In MofleNet, we reduced the number of parameters in CP-

Mobile [5] by replacing the pointwise expansion convolution of 

each CPM Block with grouped convolution, setting the number of 

groups to 2. After this layer, we added a Channel Shuffle layer, 

followed by depth wise convolution, and pointwise projection con-

volution, like the CPM Block in [5]. 

 

As shown in Fig. 1 [11], the fourth layer in a ShuffleNet unit 

is a grouped convolution. While this configuration does reduce the 

number of parameters, our experiments did not demonstrate signif-

icant improvement, so the 4th group convolution layer was not con-

sidered in our MofleNet design. Figure 3 presents our Mofle blocks.  

4. ENSEMBLE MODELS 

Our submission involves ensemble of two models, MofleNet as 

mentioned above, and CP-ResNet. To ensure that the models satisfy 

the challenge constraints of 128 kB and 30 million MACs, we re-

duced the parameter sizes of MofleNet and CP-ResNet to 59k and 

58k respectively, summing up to 117k parameters (equivalent to 

model size of 117 kB). The MACs for MofleNet and CP-ResNet 

are 13.4 million (approx.) and 16 million (approx.) summing up to 

29.4 million MACs. 

4.1. CP-ResNet59 

One of the ensemble models is a variant of CP-ResNet, which 

served as the teacher model for rank-1 model of DCASE’23 Task 

1 challenge [5] and achieved rank-1 in the DCASE’22 challenge 

[4]. Basic blocks of CP-ResNet are presented in Figure 4. We mod-

ified the architecture, of the CP-ResNet in [5] to fit the complexity 

constraints leading to CP-ResNet59. Details of the modifications 

are as follows: 
Figure 1: Basic units of ShuffleNet 

Figure 3: Mofle Blocks: (Left) Transition Block, (middle) 

Standard Block, (right) Spatial Down sampling Block. 

Figure 2: Channe1 Shuffle 
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• Since the number of parameters in the network grows quad-

ratically with its width, we reduced the channel multiplier 

from 2.0 to 1.4, bringing the parameter count below 64,000. 

• Introduced max pooling layers of shape (2x1) and stride (2x1) 

before the third and fourth (also the last) block to reduce the 

MACs. 
CP-ResNet59 architecture is presented in Table 1.  

Output Shape Format: Frequency Bands x Time Frames x Num-

ber of Channels.  

Conv2D@KxK: Conv2D with kernel size KxK.  

Table 1: CP-ResNet59 Model Architecture 

Operator Output Shape 

Input 256 x 43 x 1 

Conv2D@3x3, BN, ReLU 127 x 21 x 32 

Max Pool 63 x 10 x 32 

Basic Block 63 x 10 x 32 

Max Pool 31 x 10 x 32 

Basic Block 31 x 10 x 32 

Max Pool 15 x 10 x 32 

Max Pool (added) 7 x 10 x 32 

Basic Block 7 x 10 x 44 

Max Pool (added) 7 x 5 x 44 

Basic Block 7 x 5 x 26 

Conv2D@1x1, BN 7 x 5 x 10 

Avg. Pool 1 x 1 x 10 

4.2. MofleNet57 

The other ensemble model, MofleNet, as presented in Section 3 

was further modified to fit the challenge constraint: 

• Adjusted the channel multiplier and expansion rate to 1.8 and 

2.6, respectively. 

• To lower the MACs without impacting the accuracy, we 

carefully tuned the third Mofle Block of the original CP-

Mobile from Block S to Block D with a stride of (2x1) during 

convolution. 

Modified MofleNet architecture (MofleNet57) is presented in Table 

2.  

Output Shape Format: Frequency Bands x Time Frames x Num-

ber of Channels.  

Conv2D@KxK: Conv2D with kernel size KxK.  

Mofle Block S/D/T: Standard/Spatial Down sampling/transition 

 

Table 2. MofleNet57 Model Architecture 

Operator Stride Output Shape 

Input - 256 x 64 x 1 

Conv2D@3x3, BN, ReLU 2x2 128 x 32 x 8 

Conv2D@3x3, BN, ReLU 2x2 64 x 16 x 32 

Mofle Block S 1x1 64 x 16 x 32 

Mofle Block D 2x2 32 x 8 x 32 

Mofle Block D 2x1 16 x 8 x 32 

Mofle Block T 2x1 8 x 8 x 56 

Mofle Block S 1x1 8 x 8 x 56 

Mofle Block T 1x1 8 x 8 x 104 

Conv2D@1x1, BN - 8 x 8 x 10 

Avg. Pool - 1 x 1 x 10 

5. TRAINING SETUP 

We used PyTorch [13] as the framework to build and train the mod-

els. We used the Adam optimizer for training, with a total of 150 

epochs and a batch size of 256. The learning rate strategy follows 

the same approach as in [5], consisting of four phases:  

 

1. Warmup Phase: The learning rate exponentially increases 

for a specified number of epochs until the maximum learning 

rate. 

2. Constant LR Phase: The learning rate reaches its maximum 

value and stays constant. 

3. Linear Decrease Phase: The learning rate decreases linearly 

starting from a specified epoch. 

4. Fine tuning Phase: After the linear decrease phase com-

pletes over a specified length, the fine-tuning phase begins, 

using a learning rate equal to the maximum learning rate 

multiplied by a specified final value. 

 

The details of the learning rate settings can be found in Table 

3. The learning rate of the final phase is obtained by multiplying 

the “Maximum learning rate” and “Final value of fine-tuning phase” 

shown in the table. 

 

Table 3. Learning Rate Settings 

 MofleNet57 CP-ResNet59 

 

Number of 

epochs 

Phase 1 14 15 

Phase 2 36 35 

Phase 3 84 85 

Phase 4 16 15 

Maximum learning rate 0.0009 0.001 

Final value of fine-tuning 

phase 

0.005 0.005 

6. QUANTIZATION AWARE TRAINING 

After completing the training routine outlined above, we fine-tuned 

our models for 24 epochs using Quantization Aware Training (QAT) 

[14]. During this fine-tuning phase, we set a peak learning rate of 

5×10−5 and linearly decreased it to 10% by epoch 16. We fused all 

Conv2d + BN + ReLU combinations into a single layer and utilized 

PyTorch’s 'fbgemm' quantization configuration. All computations 

Figure 4: Two Basic Blocks of CP-ResNet 
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were performed in int8, except for those in the GRN layer of 

MofleNet. 

7. RESULTS 

The performance of the models across different dataset sizes is 

shown in Tables 4 and 5. These tables demonstrate that the ensem-

ble of the two models significantly improves accuracy. In Table 4, 

MofleNet (128k) and CP-ResNet (128k) are models with 128k 

number of parameters. This table shows that MofleNet generally 

performs better on larger datasets (100% of the whole dataset [15]) 

while CP-ResNet performs better on smaller datasets (10%, 5% of 

the whole dataset [15]). Additionally, our findings suggest that us-

ing either MofleNet or CP-ResNet alone without ensembling, re-

sults in slight improvement over the baseline model and slightly 

lower accuracy compared to scaling the sizes down and using the 

ensemble approach. 

 

Table 4. Model accuracies before QAT 

Models 
Accuracies 

100% 50% 25% 10% 5% 

Baseline (After 

Quantization) 

0.5699 0.5319 0.5029 0.4529 0.4240 

MofleNet-128k 0.6194 0.5868 0.554 0.4910 0.4294 

CP-ResNet- 

128k 

0.6065 0.5888 0.5518 0.5082 0.4708 

MofleNet57 0.5931 0.5685 0.5246 0.4546 0.4164 

CP-ResNet59 0.5957 0.5787 0.5493 0.4928 0.4498 

MofleNet57+ CP-

ResNet59- v1 
0.6255 0.6062 0.5716 0.5123 0.4773 

MofleNet57+ CP-

ResNet59- v2 
0.6273 0.6066 0.5744 0.5148 0.4785 

 

Table 5. Model accuracies after QAT 

Models 
Accuracies 

100% 50% 25% 10% 5% 

Baseline 0.5699 0.5319 0.5029 0.4529 0.4240 

MofleNet57 0.5879 0.5671 0.5221 0.4540 0.4122 

CP-ResNet59 0.5849 0.5752 0.5481 0.4879 0.4492 

MofleNet57+ CP-

ResNet59- v1 
0.6222 0.6004 0.5673 0.5127 0.4759 

MofleNet57+ CP-

ResNet59- v2 
0.6251 0.6007 0.5718 0.5152 0.4758 

 

In our submission, we applied different weights on the logits 

of the two models to get the final output logit. The two weight set-

tings are as follows:  

v1: CP-ResNet59 – 0.5, MofleNet57 – 0.5 

v2: CP-ResNet59 – 0.6, MofleNet57 – 0.4 

 

8. CONCLUSION 

In this report, we presented our approach for Task 1: Low-Com-

plexity Acoustic Scene Classification in the DCASE 2024 chal-

lenge. We introduced MofleNet, a novel architecture incorporating 

shuffle channels and residual inverted bottleneck blocks, and used 

it in an ensemble with CP-ResNet. Our methods included augmen-

tation techniques such as Freq-MixStyle and Device Impulse Re-

sponse, along with Quantization Aware Training to meet the model 

size constraint. Our experimental results demonstrated that the en-

semble of MofleNet and CP-ResNet significantly improved accu-

racy compared to individual models by approx. 4% and baseline 

by approx. 6%. Specifically, MofleNet performed better with 

larger datasets, while CP-ResNet was more effective with smaller 

datasets. These findings highlight the importance of model ensem-

bling in addressing the challenges posed by limited labeled data. 
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