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ABSTRACT 

In the design of urban traffic monitoring solutions aimed at opti-

mizing logistics infrastructure, acoustic vehicle counting models 

have gained attention for their cost-effectiveness and energy effi-

ciency. While deep learning has proven effective in visual traffic 

monitoring, its application in the auditory domain remains under-

explored due to the limited availability of real-world data. This 

study proposes the use of Short-Time Homomorphic Deconvolu-

tion (STHD) for analyzing sound signals to estimate the direction 

of vehicle sounds. This algorithm calculates distances between 

microphones based on sound direction, facilitating the inference 

of sound direction and movement. We present a strategy for de-

signing and training a deep learning model that leverages features 

derived from this algorithm. The proposed system simultaneously 

counts cars and commercial vehicles on a two-lane road under 

moderate traffic density conditions, accurately identifying their 

directions of travel. 

 

Index Terms— DCASE2024, Acoustic-Based Traffic Moni-

toring, Deep Acoustic Vehicle Counting Model, Short-Time Ho-

momorphic Deconvolution 

1. INTRODUCTION 

 

The research on acoustic vehicle counting (AVC) using AI is a 

rapidly developing field with significant potential [1]. Although 

the existing literature is relatively limited, various approaches for 

acoustic vehicle detection [2-6] and counting [7, 8, 9, 10] have 

been proposed. These methods primarily rely on the analysis of 

audio signals captured by either a single microphone or a micro-

phone array and utilize traditional signal processing, deep learn-

ing, or a combination of both. The basic objective is to detect pass-

ing vehicles, but more advanced techniques aim to differentiate 

vehicle types (e.g., cars, trucks, motorcycles), determine the di-

rection of movement (e.g., left-to-right or right-to-left), and esti-

mate speed. 

Despite the demonstrated effectiveness of data-driven approaches 

in acoustic detection tasks, their potential in the field of AVC has 

not been thoroughly explored. One significant challenge is the 

scarcity of available datasets for this purpose. Existing datasets 

are often small, insufficient for training end-to-end deep learning 

models, and typically consist of single-channel recordings. The 

process of data collection itself is complex and costly, involving 

not only audio recordings but also the collection of ground truth 

data using other sensor modalities. Additionally, developing syn-

chronization strategies to align the collected audio and ground 

truth data adds to the complexity and expense. 

In this paper, we address these challenges by proposing a novel 

approach for AVC that leverages a multi-channel microphone ar-

ray and advanced deep learning techniques. Our method includes 

the use of synthetic data to supplement limited real-world data, 

thereby improving model performance and reducing the reliance 

on extensive data collection efforts. This approach aims to ad-

vance the field of AVC by providing a more robust and scalable 

solution for accurate vehicle counting and classification. 

Sound source localization is the study of classifying sound events 

and detecting their direction. In particular, the Homomorphic De-

convolution (HD) algorithm [11-13] is effective in estimating the 

source location by considering the time of flight between micro-

phones based on the direction of the sound. As vehicles move, the 

position of the sound source changes relative to the microphone 

array. This results in variations in HD values over time, which can 

be used to determine the direction of movement. 

In this paper, we address AVC using a 4-channel linear micro-

phone array deployed on the side of a two-lane road. Our goal is 

to identify vehicle pass-by events using only 1-minute segments 

of sound data, leveraging efficient signal feature computation. For 

each detected event, the vehicle must be classified as either a car 

or a commercial vehicle (CV, including large vehicles such as 

trucks and buses) and the direction of transit must be identified. 

In this study, we introduce a convolutional recurrent neural net-

work (CRNN) for traffic counting, trained using a procedure 

based on synthetic data generated from simulation sound data. 

This method significantly reduces the amount of real-world data 

required to achieve high traffic counting accuracy. In summary, 

we first define a strategy to synthesize acoustic traffic noise, then 

pre-train the model based on the synthetically generated dataset, 

and finally perform fine-tuning using a limited amount of real-

world data. We demonstrate that the proposed method can effec-

tively count traffic using only 1-minute sound data segments. 

 

 

2. FEATURE EXTRACTION 

2.1 Spectrogram 

 

A standard signal processing preprocessing algorithm, spectro-

gram computation, was applied to each channel of the signal. 

Since vehicle sounds exhibit changes at relatively low frequencies, 

the y-axis was cropped to the range of 1 to 128, corresponding to 
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frequencies from 0 to 2000 Hz. This resulted in feature data of 

size 128x1874x4. 

The spectrogram allows us to observe representative patterns in 

the simulation sound. When a vehicle approaches, the frequency 

increases, and when it moves away, the frequency decreases. This 

phenomenon is due to the Doppler effect. Additionally, the differ-

ence between cars and commercial vehicles can be seen in the 

pattern of decreasing frequencies. Cars tend to show more fre-

quent decreases in frequency compared to commercial vehicles. 

 

 

2.2 Short-Time Homomorphic Deconvolution (STHD) 

 

in this section, we propose the Short-Time Homomorphic Decon-

volution (STHD) algorithm and apply a method for computing 2D 

data, introducing a solution that uses these features to determine 

the direction of vehicle movement solely from acoustic signals. 

The input consists of pairs of signals summed together, resulting 

in 6-channel input data. When summing the signal pairs, an arbi-

trary delay is added to one of the channels to center the STHD 

algorithm's pattern. To extract the central pattern, the y-axis is 

cropped to the range of 129 to 384, creating feature data of size 

311x128x6. 

 

 

Figure 1 shows the STHD results of simulation data. Figure 1 (a) 

illustrates the sound data when a car moves from left to right rel-

ative to the microphone array, displaying a pattern descending 

from top to bottom along the y-axis in the STHD output. Figure 1 

(b) illustrates the sound data when a car moves from right to left 

relative to the microphone array, showing a pattern ascending 

from bottom to top along the y-axis in the STHD output. 

 

 

2.3 Feature Analysis  

 

Using feature preprocessing methods, we describe the actual data 

analysis of "loc1/train/00000.flac". The labels for this sound data 

are as shown in Table 1. 

 
Table 1. label of loc1/train/00000.flac 

Label Name car-l2r car-r2l CV-l2r CV-r2l 

Label (counts) 1 1 1 0 

 

 
Figure 2. Raw signal 4-channel graph of "loc1/train/00000.flac". 

 

 

 
Figure 3. Spectrogram features of 4 channels for "loc1/train/00000.flac". 

 

 

 
Figure 4. STHD features of 6 channels for "loc1/train/00000.flac". 

 

 

Especially in Figure 4, multiple vehicles moving can be observed, 

showing patterns both upwards and downwards along the time 

axis. There are two instances of downward patterns, indicating 

vehicles moving from left to right: one labeled as car-l2r and one 

as CV-l2r. Additionally, one instance of an upward pattern is vis-

ible, indicating a vehicle moving from right to left, labeled as car-

r2l. This feature extraction method proposed enables precise anal-

ysis of vehicle types and their directional movements. 

  

 
(a) 

 
(b) 

Figure 1.  Results of Short-Time Homomorphic Deconvolution on Simulation 

Data. (a) Car moving from left to right. (b) Car moving from right to left. 
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3. MODEL ARCHITECTURE 

2.2. CRNN Architecture 

 

 
Figure 5. The proposed CRNN architecture takes the raw signal input from a 4-

channel linear microphone array and computes: a) a spectrogram; b) the STHD 

with the sum of pairs of channels. Two ResNet models compute sound infor-

mation and sound movement information features, respectively. The concate-

nated features are processed along the time dimension, followed by a Gated Re-

current Unit (GRU) and a fully connected (FC) layer for regressing the number 

of vehicles per type (car, CV) and per direction (left-to-right, right-to-left). 

 

 

The the convolutional recurrent neural network (CRNN) ar-

chitecture used in this study integrates CNNs to learn patterns in 

features related to vehicle sound information and direction. The 

outputs from CNNs provide separate predictions for sound char-

acteristics and movement directions of vehicles. RNNs are em-

ployed to learn temporal dependencies in both sound characteris-

tics and directional information, enabling the model to infer which 

vehicles are moving in which direction over time. 

The CNN component utilizes the ResNet18 architecture. The first 

layer consists of Conv2D with 64 filters, tailored to accommodate 

the input channels of each feature type. Specifically, Spectrogram 

features are input with 4 channels, while STHD features are input 

with 6 channels. The final global average pooling layer is modified 

to fix the time dimension, enhancing the capture of temporal data 

flow by the Gated Recurrent Unit (GRU). 

The outputs from each feature type are concatenated. The final 

fully connected (fc) layer of ResNet18 is removed, and the data is 

reshaped to (59x1024) along the time dimension, which conforms 

to the sequential data format required by the GRU. 

The GRU has a hidden dimension of 256 and consists of 2 layers. 

Specifically, it employs a non-directional GRU to process sequen-

tial data. This choice is made because the patterns in STHD fea-

tures resemble horizontally flipped patterns of different labels (e.g., 

the temporal pattern of car-l2r is similar to the horizontally flipped 

temporal pattern of car-r2l), potentially causing confusion if bidi-

rectional GRU were used. 

Finally, a FC layer with 4 neurons serves as the regression output, 

providing vehicle counts in four categories: car-l2r, car-r2l, cv-l2r, 

cv-r2l. The model comprises a total of 23.7M trainable parameters. 

 

4. EXPERIMENTAL RESULTS 

4.1 Synthetic Simulation Data 

 

One of the primary challenges in deep learning models is the re-

quirement for large volumes of training data. To address this, we 

synthesized a new dataset of 6000 samples by augmenting publicly 

available simulation data. Labels were randomly generated, with a 

maximum of 20 cars and 5 commercial vehicles (CVs) per sample. 

The synthesized sound data was generated using MATLAB. 

 

4.2 Experimental Setup 

 

In this section, we detail the experimental setup conducted for 

training and evaluating our model. 

The sample frequency is throughout 16 kHz in all data and apply-

ing peak normalization to each audio segment. During training, 

we employed a mean squared error loss function with the Adam 

optimizer set to a learning rate of lr = 10−4 and a batch size of 16. 

The model was trained for 100 epochs, with the best checkpoint 

selected based on validation loss criteria. 

The proposed architecture was implemented using PyTorch and 

trained on a single RTX 4060Ti-16GB GPU to leverage compu-

tational efficiency. Initially, we trained the model using only Syn-

thetic Simulation Data, dividing it into separate train and valida-

tion sets for pre-training the model. Subsequently, we applied 

transfer learning using the pre-trained model on real-world data. 

Transfer learning was conducted individually for each location 

(loc1 ~ 6) to adapt the model to specific environmental variables 

surrounding each recording location, such as ambient noise con-

ditions and microphone array characteristics. 

 

 

5. CONCLUSION 

 

In this study, we propose an AVC system based on a CRNN archi-

tecture utilizing a novel feature extraction method, including 

Short-Time Homomorphic Deconvolution. The model aims to 

count traffic for various vehicle types and directions of transit. Pre-

training on synthesized simulation data and transfer learning on 

real data provide significant advantages in achieving high counting 

accuracy. Future research will analyze the impact of non-vehicle 

sounds and microphone array noise on counting performance and 

evaluate the model's generalization capabilities across diverse en-

vironments. Parts of this work have been submitted for patent ap-

proval or are currently in progress. 
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