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ABSTRACT

This technical report describes our approach to participate in
DCASE 2024 Challenge Task 1: Data-Efficient Low-Complexity
Acoustic Scene Classification. Our main contribution to this work
is the use of an improved backbone model, a modified BC-Res2Net
with the GhostNet module. In addition, to improve generaliza-
tion performance even with a limited amount of training data, we
adopted the Snake activation function, which is known to be robust
to unseen data due to its extrapolation capabilities. Through ex-
periments, we demonstrated that our model significantly improves
acoustic scene classification performance, especially when the num-
ber of training samples is limited.

Index Terms— Acoustic Scene Classification

1. INTRODUCTION

Detection and Classification of Acoustic Scenes and Events
(DCASE) is an annual audio-related challenge that aims to explore
a variety of audio-related tasks, such as acoustic scene classifica-
tion (ASC), audio captioning, audio retrieval, and audio-based traf-
fic monitoring. Among them, we focus on task 1: Data-Efficient
Low-Complexity ASC as the primary research.

As it has been, the goal of this task is to achieve higher effi-
ciency in ASC. Similar to previous years, limitations on model size
and the number of multiply-accumulate operations (MACs) remain
consistent to address constrained computational resources. In ad-
dition to computational efficiency, one more aspect of efficiency
was introduced this year: data efficiency. Participants also have
to achieve data efficiency in achieving robust acoustic scene clas-
sification. To this end, they were given five different subsets with
different sample sizes, spanning from 5% to 100% of the original
training dataset, to address the scarcity of labeled data applicable to
real-world contexts.

In this report, we mainly investigate the BCRes2Net [1, 2] with
the GhostNet V2 module [3, 4], aiming to maintain high classifi-
cation accuracy under limited data conditions. Additionally, we
utilized the Snake function [5] as an activation function instead
of a Swish function inside BCRes2Net. Furthermore, we inspect
the knowledge distillation method using two pre-trained models,
PaSST [6] and EAT [7], to reinforce the proposed model. With our
model, we achieved about 6.5% accuracy improvement on average.

The remainder of the report is organized as follows: Section
2 explains a detailed exposition of the proposed systems, showing
their robust performance recognition, particularly when faced with
constraints on data availability. Section 3 discusses the results of our
experiments including experimental settings and evaluation results.
Section 4 presents our conclusion.

2. PROPOSED SYSTEM

2.1. Model Architecture

The basic structure of our proposed model is based on
BCRes2Net[1, 2]. BCRes2Net utilizes both 1D convolution and
2D convolution, combining frequency depth-wise convolution and
temporal depth-wise convolution operations to perform residual op-
erations. The model with its small number of parameters extracts
feature maps along the frequency and time axes respectively and
combines them effectively. It shows high performance in both key-
word spotting[1] and ASC tasks [2, 8, 9].

In our previous study [9], we applied the GhostNet V2 [3, 4]
module to BCRes2Net. The GhostNet V2 module is designed to
enhance the efficiency of feature map extraction by limiting the ex-
traction of redundant features. This is achieved by utilizing a series
of low-cost operations that generate more features from intrinsic
features through a lightweight and cost-effective structure. Addi-
tionally, the decoupled fully connected attention (DFC Attn) mod-
ule is incorporated which enhances the intermediate features by ag-
gregating local and long-range information simultaneously, leading
to improved performance.

2.2. Periodic Activation Function

BCRes2Net-based networks [1, 2, 9] use the Swish function [10] as
an activation function after every temporal depth-wise convolution
operation. The Swish function is defined as follows:

Swish(x) = x+ σ(x), (1)

where σ(·) indicates the sigmoid operation. Although the Swish ac-
tivation function is known to be effective in various tasks, we sought
to replace this activation function with another one to achieve better
generalization performance even with a smaller amount of training
data.

As an alternative, we chose the Snake function [5] and replaced
the Swish with the Snake function. The Snake function can be de-
fined as follows:

Snake(x) = x+
sin2(αx)

β
, (2)

where α and β control the periodic part [5]. The main reason for
adopting the Snake function is that it is known to be robust to un-
seen samples due to its periodic component (sin2(x)). That is, the
Snake function can be useful, especially when training samples are
scarcely given.
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Table 1: Specification of Snake-Ghost-BC-Res2Net. F, T, and C denote the size of frequency, time, and channel dimensions, respectively.
Also, PQ and FP16 indicate 8-bit post-quantization and 16-bit weight precision, respectively. The values in parentheses for the input column
indicate the number of channels when using FP16. “DFC Attn” denotes a decoupled fully connected attention module.

Stage Input (F×T×C) Operation DFC Attn C Strides

stem F × T × 1 Conv + ReLU + BN - 2C 2

1 F/2 × T/2 × 2C Ghost-BC-Res2Net w/ Snake act. Block True C -
F/2 × T/2 × C Ghost-BC-Res2Net w/ Snake act. Block False C -

2 F/2 × T/2 × C Max-Pool2d - - 2
F/4 × T/4 × C Ghost-BC-Res2Net w/ Snake act. Block True 1.5C -

F/4 × T/4 × 1.5C Ghost-BC-Res2Net w/ Snake act. Block False 1.5C -

3 F/4 × T/4 × 1.5C Max-Pool2d - - 2
F/8 × T/8 × 1.5C Ghost-BC-Res2Net w/ Snake act. Block True 2C -
F/8 × T/8 × 2C Ghost-BC-Res2Net w/ Snake act. Block False 2C -
F/8 × T/8 × 2C ResNorm - 2C -

4 F/8 × T/8 × 2C Ghost-BC-Res2Net w/ Snake act. Block True 2.5C(PQ)/2C(FP16) -
F/8 × T/8 × 2.5C(2C) Ghost-BC-Res2Net w/ Snake act. Block False 2.5C(PQ)/2C(FP16) -

F/8 × T/8 × 2.5C Ghost-BC-Res2Net w/ Snake act. Block False 2.5C(PQ) -

head F/8 × T/8 × 2.5C(2C) Global Avg. Pool - - -
1 × 1 × 2.5C Linear - num classes -

Table 2: Test Accuracy (%) for each train subset of each model

Train subset size
Architecture TYPE FLOPS (MAC) # params 5 10 25 50 100 average

Baseline 29.42 M 61,148 42.40 45.29 50.90 53.19 56.99 49.75

Ghost-BC-Res2Net LARGE 28.56 M 85,824 46.56 51.87 56.50 58.57 60.97 54.89
+ w/ Snake Act. (PQ) LARGE 28.56 M 85,824 49.87 52.99 56.00 58.55 61.30 55.74
+ w/ Snake Act. (FP16) SMALL 26.48 M 63,992 49.72 53.17 58.35 59.39 61.94 56.51

2.3. Knowledge Distillation

Knowledge distillation [11] is a technique to improve the perfor-
mance of a model through the distillation of knowledge from the
teacher model. Several studies have demonstrated that using knowl-
edge distillation techniques can enhance the performance of models
in ASC task [12, 13].

For example, PaSST has been proven to be an effective teacher
model for improving classification performance in low-complexity
CNNs [13]. As such, we applied a knowledge distillation strategy
with two teacher models: PaSST [6] and EAT [7]. EAT achieved
state-of-the-art performance on the AudioSet classification task. To
introduce diversity into the soft labels generated by the teacher,
we applied online distillation to the model, that is, we alternately
trained the teacher and student models at each training step.

2.4. Model Compression

To meet the task constraints, we took two different approaches. The
first approach is applying Post Quantization (PQ) after training with
32-bit precision weights to have an 8-bit precision model. The other
involves using mixed precision, having FP16 precision weights. As
using 16-bit precision weights needs twice the memory of that of
8-bit precision weights, we used a smaller network architecture to
meet the constraint. More precisely, we removed the last block in
the last stage of the model. In addition, we reduced the number of

channel multipliers of the last stage from 2.5 to 2 (Tab. 1). As shown
in Tab. 2, the model after PQ had approximately 86k parameters
with 28.56 MMACs, whereas the model with FP16 precision had
64k parameters with 26.48 MMACs.

3. RESULTS

3.1. Experimental Settings

We built our system on top of the publicly available baseline
code [14], which was provided by the host of the challenge. We
trained models with TAU Urban Acoustic Scenes 2022 Mobile
dataset [15] and did not use any other dataset during training.

Regarding input features, we employed the log mel-
spectrogram with 288 mel bins after resampling audio samples to
a 32 kHz sampling rate. The window size was set to 3072, the
hop size to 500, and the number of FFT points to 4096. We used
frequency masking [16], freq-mixstyle [12, 17], and time rolling
for data augmentation. In addition, we utilized device impulse re-
sponses from the Microphone Impulse Response Project (MicIRP)
[18] to augment audio files to train models to be robust to various
recording environments, as done by Shmid et al. [13].

Regarding optimization, we used the AdamW along with cosine
annealing with a warmup scheduler. The batch size was set to 256,
and all proposed models were trained for 200 epochs. For each
train subset size, we used the same shared training hyperparameters,
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Table 3: Test Accuracy (%) for each train subset of our model using knowledge distillation
Train subset size

Student Model Teacher Model 5 10 25 50 100 average

EAT Base (Fine-tuning on AS-2M) EP30 47.82 53.11 57.60 59.21 61.6 55.87
EAT Base (Fine-tuning on AS-2M) EP10 49.10 53.18 55.93 59.60 61.84 55.93

Ghost-BC-Res2Net w/ Snake Activation FP16 EAT Base (Pre-training) EP 30 48.81 52.05 56.5 58.93 61.77 55.61
PaSST-S SWA P16 F128 (AP476) 48.09 52.54 56.65 58.79 61.54 55.52
PaSST-S SWA P16 F128 (AP4761) 48.05 52.14 57.34 59.79 62.55 55.97

including learning rate and batch size. That is, we did not tune
training-related hyperparameters for different subset sizes.

For knowledge distillation, we selected Ghost-BC-Res2Net
with Snake activation FP16 model as a student model. We adjusted
the input data to match the settings used during the pre-training of
the teacher model and trained it for 150 epochs. We set the learn-
ing rate of the teacher model to be 0.01 times smaller than that of
the student model. We use the following knowledge distillation loss
function [13]:

L = λLce(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)), (3)

where Lce is cross entropy loss for hard labels and Lkd is Kullback-
Leibler divergence loss for soft labels. δ denotes log-softmax acti-
vation function and τ denotes temperature which we set to 2.0. zS
and zT are logits from student and teacher respectively, and y are
hard labels. λ denotes the distillation loss coefficient and is set to
0.02. In this work, we applied online distillation [19], since our
teacher model has not been pre-trained on the current task data.

3.2. Experimental results

Tab. 2 provides quantitative results on the TAU validation dataset,
each trained with a different training data size. As the table shows,
replacing the backbone architecture with our proposed network
architecture significantly improves performance regardless of the
training data size, from at least 10.3 % to 12 % increase in test
accuracy. After applying the Snake activation function, our experi-
ments showed that the model’s performance improved compared to
the model without the Snake activation function. As a result, the
average accuracy over various train subset sizes improved by ap-
proximately 3%. This indicates that the Snake activation function
enhances the model’s extrapolation capabilities, allowing it to oper-
ate robustly on unseen signals. The model with PQ demonstrated a
notable performance improvement of 7.1% on subset 5 when only a
small dataset was allowed. Furthermore, the model with FP16 pre-
cision, despite using fewer parameters than the PQ-applied model
and Ghost-BC-Res2Net, demonstrated an average performance im-
provement of 1.3% and 3%, respectively.

Tab. 3 shows the results on the TAU validation set for the model
trained using online knowledge distillation with PaSST and EAT as
teachers. For the models trained with EAT, the fine-tuned model
on AudioSet provides better average accuracy than the pre-trained
model. PaSST-S (AP4761) shows the best performance among the
models trained with knowledge distillation. Specifically, on subsets
50 and 100, it achieved an accuracy improvement of 0.6% and 0.9%,
respectively, compared to the model trained without knowledge dis-
tillation. Although the models trained with knowledge distillation
showed higher performance in some experiments, the overall aver-
age accuracy was degraded.

4. CONCLUSION

In this report, we describe our method for achieving data- and
computationally-efficient ASC, using Snake activation functions
with Ghost-BC-Res2Net and applying knowledge distillation tech-
niques. The Snake function, which has both the advantage of
monotonic and periodic activation functions, demonstrated its ef-
fectiveness in classifying acoustic scenes robustly even with a small
amount of training data. Through online knowledge distillation, we
observed performance improvements in some experiments; how-
ever, achieving even better performance may require optimizing the
training hyperparameter settings. Our experimental results demon-
strate the superiority of our approach, especially in a very data-
scarce environment.
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