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ABSTRACT

This technical report describes our approach for Task 2 of
the DCASE 2024 Challenge. This task aims to develop
an anomalous sound detection (ASD) system to determine
whether the sound emitted from a target machine is normal
or anomalous. To tackle this task, we propose an unsu-
pervised deep learning model based on a normalizing flow
architecture. Our framework consists of a pre-trained en-
coder (WideResNet50) and a multi-scale generative decoder
to estimate the log-likelihoods of feature vectors. The in-
put to the model is an image comprising four different time-
frequency representations of the sounds (Mel spectrogram,
CQT-chroma, tonnetz, and spectral contrast) together with
five 1D characteristics computed along the time index. All
the 2D and 1D features are concatenated in the frequency di-
mension, resulting in an image 158 pixels high, with their
width depending on the duration of the sounds.

Index Terms— Anomalous sound detection, C-Flow,
Mel spectrogram, industrial machinery.

1. INTRODUCTION

The DCASE 2024 Challenge Task 2 [1] focuses in Anoma-
lous Sound Detection (ASD) for Machine Condition Moni-
toring. It is a first-shot unsupervised problem because it in-
volves training a model using a limited number of machines
from its machine type, and the source and target domain
data are imbalanced. This year, only a few machines have
attribute information. The system must perform effectively
both with and without this information.

The task offers two baseline methods: a standard autoen-
coder and a method that uses Mahalanobis distance autoen-
coder. The first excels in ASD but struggles with domain
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generalization, and the second performs well in the source
domain, but does not work properly in target domain.

Our approach employs conditional normalizing flows us-
ing memory-efficient architecture. The framework imposes
multivariate Gaussian (MVG) prior to the parameters and the
feature vectors extracted from the feature maps. After this,
it measures the Mahalanobis distance of a particular feature
vector to its MVG distribution. Finally, it uses generative
probabilistic models (flows) based on layered transforma-
tions to estimate the exact likelihood of any arbitrary distri-
bution.

2. DCASE2024 TASK 2 DATASETS

The organizers provided three datasets [2, 3] of machine
sounds, and all of them are mono recordings. The first
dataset is the Development dataset comprising 1000 normal
and anomalous operating sounds from seven types of ma-
chines. Their sounds are 10s long except for two of the ma-
chines that are 12s long, and the seven classes include source
and target sounds. Secondly, the Additional training dataset
consists of 1000 sounds from nine machines, all of them dif-
ferent from the machines of the Development dataset. Their
duration varies from 6 to 10s long and they also include
source and target labels, but all of them are classified as nor-
mal. The Evaluation dataset has 200 recordings from the
same machines of the Additional training dataset, but it com-
prises unlabeled normal and anomalous sounds.

2.1. Audio features extraction

We have extracted several audio features to form the input
matrix of the model described in section 3 inspired by the
ensemble of audio features used in [4, 5] to classify environ-
mental sounds. For the time processing we have used a hann
window of 64ms (sampling frequency fs = 16kHz). The
extracted features at each time frame have been:

• The log-energy of the Mel spectrogram of 128 bins.
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• The constant-Q transform (CQT) chroma [6] resulting in
12 values.

• The spectral contrast [7] of 7 octave bands.
• The the tonal centroid features (tonnetz) [8] resulting in

6 values.
• The root mean square value.
• The spectral centroid.
• The spectral bandwidth.
• The spectral flatness.
• The zero-crossing rate.

All the audio features were concatenated along the y-axis
forming an input matrix of dimensions [158×Nf ], being Nf

the number of time frames, which depends on the particular
duration of each type of machine. All the audio features have
been computed with librosa [9].

As a final remark, the CQT-chroma, tonnetz and spec-
tral contrast features are often used when processing music
audio signals since they can represent and discriminate har-
monic content. However, some types of machinery noises are
harmonic and we have considered worthy to include them in
this work.

3. MODEL DESCRIPTION

Normalizing flows are unsupervised generative models.
They can serve as a suitable estimator of probability densi-
ties to detect anomalies because they are able to learn trans-
formations between data distributions. Compared to other
methods, they are promising because of their ability to gen-
eralize and high inference efficiency [11].

We utilize CFLOW [10], which consists of an encoder for
feature extraction and a decoder for likelihood estimation. As
shown in Figure 1, our experiments use the same multiscale
feature pyramid pooling to capture details at different reso-
lutions within the audio features concatenated. The encoder
employed is ImageNet-pretrained WideResnet-50.

After this stage, the aim is to fit different densities with
conditional normalizing flow framework and independent
decoder models. The reason why multiple decoders are used
is because of the multi-scale pyramid pooling setup feature.
The decoder incorporates spatial prior, generating a condi-
tional vector that contains sin and cos harmonics to encode
the position, and a sequence of coupling layers. Each cou-
pling layer is fully connected, with softplus activation and
permutations of the output vector.

Finally, both the encoder and the decoders have
translational-equivariant convolutional architectures, be-
cause they use kernel parameter sharing. After estimating
the probability density functions and transforming them into
Gaussian distributions, the classification decision is based on
an adaptive theshold.

Method Baseline CFlow

ToyCar AUC(source) 66.98% 69.13%± 4.87%
AUC(target) 33.75% 53.25%± 6.61%

ToyTrain AUC(source) 76.63% 60.56%± 7.31%
AUC(target) 46.92% 61.3%± 11.24%

Bearing AUC(source) 62.01% 74.06%± 3.19%
AUC(target) 61.4% 66.09%± 11.73%

Fan AUC(source) 67.71% 67.45%± 1.37%
AUC(target) 55.24% 45.52%± 15.16%

Gearbox AUC(source) 70.4% 64.96%± 2.21%
AUC(target) 69.34% 62.52%± 4.14

Slider AUC(source) 66.51% 72.42%± 4.28%
AUC(target) 56.01% 51.96%± 6.82

Valve AUC(source) 51.07% 72.05%± 6.12%
AUC(target) 46.25% 56.47%± 6.32%

Table 1: Average AUC values through three independent
runs. Development dataset machines for the baseline MSE
and the proposed method.

4. RESULTS AND DISCUSSIONS

Table 1 presents the results of our model compared to the
baseline described in [12]. Our audio features with CFlow
model shows better performance on the target domain. It
is important to highlight the training (Avg. 9 minutes) and
inference times (Avg. 5.5 seconds), since CFlow converges
to similar results but with less computation when using MVG
assumptions. It is interesting to note that using the proposed
method is not a benefit for the fan and gearbox machines, so
that a line of research should be opened to include data such
as attributes that would allow the model to better understand
the normality of these samples.
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Figure 1: Framework proposed. Audio feature extractor with CFLOW [10] adaptation.
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