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ABSTRACT

In this technical repot, we describe our submission system for
DCASE2024 Task5: Few-shot Bioacoustic Event Detection. We
propose a metric learning method to construct a novel prototypical
network, based on Leaky Integrate-and-Fire Neuron and Squeeze-
and-Excitation (SE) blocks. We make better utilization of the nega-
tive data, which can be used to construct the loss function and pro-
vide much more semantic information. Most importantly, we pro-
pose to use SE blocks to adaptively recalibrate channel-wise feature
response, by explicitly modeling interdependencies between chan-
nels, which improves f-measure to 53.72 %. For the input feature,
we use combination of per-channel energy normalization (PCEN)
and delta mel-frequency cepstral coefficients (∆MFCC), then the
features were first transformed through Leaky Integrate-and-Fire
Neuron to mimic brain function. Our system performs better than
the baseline given by the officials, on the DCASE2024 task 5 vali-
dation set. Our final score reaches an f-measure of 55.49 %, outper-
forming the baseline performance.

Index Terms— DCASE, few-shot bioacoustic event detection,
prototypical network, adaptive segment-level learning, data aug-
mentation

1. INTRODUCTION

Few-shot classification [1, 2, 3, 4] is a task in which a classifier must
be adapted to accommodate new classes not seen in training, given
only a few examples. Using a naive approach, such as training the
model on a few data, would lead to severe overfitting, which causes
bad generalization[5]. Sound event detection [6] is a task that needs
to locate the onset and offset of certain sound classes. In order to
solve the few data problem in the audio field, Wang et al. combine
the idea of few-shot learning with sound event detection, which can
detect a new sound event with only a few labeled samples. This
makes it highly suitable for tasks such as monitoring the animal
population through their vocalizations, where labeling the data may
be costly to annotate.

In the previous DCASE 2021 task 5, most of the participants
used a prototypical network [7]. Anderson et al. [8] proposed to

Corresponding authors: Kun Qian and Bin Hu.

use the prototypical network combined with various data augmen-
tation, inputting the PCEN feature. Yang et al. [9] proposed a trans-
ductive inference method to maximize the mutual information be-
tween query features and their label predictions. Tang et al. [10]
proposed to use embedding propagation and attention similarity ap-
proaches to improve the model performance. Various data augmen-
tation methods are used in the system described in [11, 12].

In the DCASE 2022 task 5, Liu et al. [13] mentioned that in the
previous works, the negative segment in each audio file is not fully
used. So they proposed to use both positive segment and negative
segment to construct the system, which outperformed the baseline
by a large margin. In DCASE 2023, we presented our initial im-
plantation with called SE-prototypical network [14]. Our system is
based on their main idea and our previous work, and we propose
a new metric learning architecture, called LIF-prototypical net-
work, which can better utilize the information from different chan-
nels to improve the model performance and model generalization.

Metric learning [15, 16, 17] is a machine learning method
aimed at learning a distance metric function, so that similar sam-
ples are closer and un-similar samples are farther under this metric.
Metric learning is commonly used for tasks such as classification,
clustering, and retrieval, which can improve model performance by
learning a better distance. In the previous task 5 challenge, most
of the studies [8, 9, 10] only use the labeled positive data to make
the features closer. However, the positive data also need to be dis-
tinguishable from the negative data within the same audio file. We
utilize better both positive segments and negative segments to solve
the problem.

Because no external dataset is allowed, we do not use the Au-
dioSet [18]. We also have studied different audio features to choose
the best feature for this task, including log-mel spectrogram (MEL),
per-channel energy normalization (PCEN) [19], mel-frequency cep-
stral coefficients (MFCC), and delta-MFCC (∆MFCC). Finally, we
tend to use the combination proposed by Liu et al. [13], using PCEN
and delta-MFCC together as our input features.

This technical report will be organized as follows: Section 2
provides an overview of our system. Section 3 introduces the meth-
ods we proposed and used to improve our system. Section 4 pro-
vides the experiments and results. Section 5 discusses the difficul-
ties we met during the experiment. Section 6 summarizes this work
and provides a conclusion.
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2. SYSTEM OVERVIEW

2.1. Dataset

Challenge official dataset DCASE 2024 task 5 dataset contains
a training set, an validation set from the development set, and an
evaluation set. The training and validation set are both fully labeled.
The evaluation set is provided only with the labels of the first five
positive events.

We use the training set and the validation set from the develop-
ment set provided by DCASE for training. For the validation set,
we only use the first five annotations for training, and the remaining
part is used to verify the training effect.

2.2. Model Architecture

The original baseline system contains a encoder, made up of 4 Con-
vBlock, each of which contains a Conv2d block, a BatchNorm2d
layer, ReLU function and a Maxpool2d. The newly revised base-
line system is constructed on the basis of ResNet framework, which
also contains 4 Basic Block, and uses a downsample feature to act
as a residual feature. The architecture of Basic Block is shown
in Figure 1. For our novel prototypical network architecture, we
have made some changes on the original framework. We introduce
the Squeeze-and-Excitation mechanism, which will be discussed in
later Section 3. The whole network architecture is like Figure 2. We
use several SE block to enhance the important feature in order to get
better performance. The more details about the architecture will be
introduced in Section 4.
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Figure 1: Basic Block

2.3. Evaluation metric

we use the event-based f-measure as the evaluation metric for all
the experiments. Meanwhile, we calculate and record the preci-
sion and recall for each epoch. To determine the optimal choice for
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Figure 2: Network Architecture

threshold of the evaluation set in 2024, we calculate the f-measure
of the Full version validation set in 2023.

3. METHOD

3.1. Feature extraction

Delta MFCC and PCEN. Perform cepstrum analysis (taking
logarithms and performing DCT transformation) on the Mel-
spectrogram to obtain the Mel-scale Frequency Cepstral Coeffi-
cients (MFCC). Derive MFCC and mix it with the original MFCC
to obtain delta MFCC.

Per channel energy normalization introduces a normalization
mechanism for each channel based on FFT or Filter Banks (Fbank)
features to suppress the impact of input signal amplitude changes
on recognition results

3.2. Leaky Integrate-and-Fire Neuron

The Leaky Integrate-and-Fire (LIF) neuron model is a corner-
stone of computational neuroscience, providing a simplified yet in-
sightful representation of neuronal dynamics. This model is pivotal
for understanding the fundamental mechanisms of neuronal behav-
ior and synaptic integration. In this article, we explore the mathe-
matical formulation, biophysical interpretation, and applications of
the LIF neuron model in both theoretical and practical contexts. The
core equation is given by:

τm
dV (t)

dt
= −(V (t)− Vrest) +RmI(t) (1)

where τm is the membrane time constant, Vrest is the resting mem-
brane potential, RmI(t) is the membrane resistance, and I(t) is the
input current. When the membrane potential τm reaches a thresh-
old, the neuron fires an action potential (spike) and the membrane
potential is reset to a specified value Vrest.

3.3. Prototype network

A prototypical network [7] is a type of neural network that uses
a similarity-based approach to classify input data. The basic idea
behind it is to learn a prototype for each class in the training data.
A prototype is a representative example of a class that captures the
essential features of the class.

To classify a new input, the prototypical network computes the
similarity between the input and each prototype, The similarity is
typically measured using a distance metric, such as Euclidean dis-
tance or cosine similarity. The input is then classified as belonging
to the class with the closest prototype.

During training, the prototypical network is given a set of la-
beled training data. For each class, the networks learns a prototype
by computing the mean of all the training examples in that class. It
Uses a distance metric to measure how similar the input is to the
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prototype. Then the input is classified as belonging to the class
with the closest prototype, which is typically done using a nearest
neighbor algorithm. The prototypical network can be trained us-
ing gradient descent or other optimization algorithms to minimize
a loss function that measures the distance between the input and its
assigned prototype.

From the official baseline system, we find that it uses the av-
erage embedding of the entire audio set as the negative prototype,
because of no negative annotation given. However, it is based on
the assumption of the positive event is sparse. In most of the eval-
uation files, the positive events are very dense. Building a negative
prototype in this way can lead to a degraded result.

In order to better construct the positive prototype and the nega-
tive prototype, we propose two assumptions:

1. The positive events do not vary a lot. So the positive proto-
type is calculated by simply averaging the embeddings of the
labeled positive segments.

2. The negative prototype are built by the negative sample
searching algorithm, proposed by Liu et al. [13]. The al-
gorithm includes a frequency bins weighting step and a fre-
quency pattern matching step.

• The frequency bins weighing operation is proposed to
help us find the negative event more accurately, by get-
ting the frequency band that is most likely to contain the
target sound event.

• The frequency pattern matching aims to locate possible
negative samples, by using a threshold calculated using
the minimum SISNR [20] value.

3.4. SE Block

Squeeze-and-Excitation block [21], as shown in Figure 4, uses an
adaptive mechanism to assign different weights to different chan-
nels of the feature map, enhancing important features and weak-
ening less important ones. Assuming that the input feature map
of the squeezing excitation block is X ∈ RC×H×W , the squeez-
ing excitation block first uses a global average pooling to compress
the feature map into a channel descriptor z of size C × 1 × 1.
Then, this channel descriptor is predicted for the importance of
each channel through two fully connected layers. Specifically Rep-
resented as Weight = σ (W2δ (W1z)), where δ represents the
ReLU function,σ represents the Sigmoid function, W1 ∈ R

C
r
×C ,

W2 ∈ RC×C
r , Weight ∈ RC×1×1. Finally, the obtained weight is

excited onto the corresponding channel of the feature map, obtain-
ing U = X ×Weight, U ∈ RC×H×W . The working mechanism
is shown in Figure 3.

3.5. Post-processing

4. EXPERIMENTS AND RESULTS

Among various acoustic features, such as log-mel spectro-
gram(MEL), per-channel energy normalization(PCEN) [19], mel-
frequency cepstral coefficients (MFCC), delta-MFCC (∆MFCC)
and so on, we finally choose delta MFCC and PCEN as our input
features because of their optimal performance.

During the training process, we calculate the f-measures of
each epoch and select the checkpoint corresponding to the largest f-
measure as the best checkpoint to predict the full version validation
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set for 2022 and evaluation set for 2023 under different thresholds.
We choose the threshold corresponding to the highest f-measures
as our submission option. At the same time, we will also use SE
block as one of the submission options. Above all, we obtained the
four systems we submitted, and the specific performance is shown
in Table 1.

5. DISCUSSION

Compared to the challenge in 2023, the data volume of training set
has a huge increment, which makes the experiment more difficult
due to the lack of high performance computing devices.

6. CONCLUSION

We have improved the prototype network on the basis of the base-
line system, incorporating SE blocks into the model, and post-
processing the obtained prediction results. Through experimental
results, it can be found that our system performance has been greatly
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Table 1: Submission Overview
No. of SE LIF Beta Threshold F-measure Submission

None 0.85 0.15 51.43 1
1 after layer 1 0.9 0.15 53.72 2

2 0.85 0.16 51.83 3
1 after layer 3 0.9 0.15 55.49 4

improved compared to baseline, with the highest f-measure reach-
ing 55.49 % on the validation set.

7. ACKNOWLEDGMENT

The authors would like to thank the organisers of this chal-
lenge, for proposing an interesting and novel problem which
is relevent to our own research. This work was par-
tially supported by the National Natural Science Foundation of
China (Nos. 62272044 and 62227807), the National Key R&D Pro-
gram of China (No. 2023YFC2506804), the Ministry of Science and
Technology of the People’s Republic of China with the STI2030-
Major Projects (Nos. 2021ZD0201900 and 2021ZD0200601), and
the Teli Young Fellow Program from the Beijing Institute of Tech-
nology, China.

8. REFERENCES

[1] E. G. Miller, N. E. Matsakis, and P. A. Viola, “Learning from
one example through shared densities on transforms,” Proc.
CVPR, Hilton Head, SC, USA, vol. 1, pp. 464–471 vol.1,
2000.

[2] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum,
“One shot learning of simple visual concepts,” Cognitive Sci-
ence, vol. 33, 2011.

[3] G. R. Koch, “Siamese neural networks for one-shot image
recognition,” Master’s thesis, University of Toronto, 2015.

[4] Y. Wang, Q. Yao, J. T.-Y. Kwok, and L. M. shuan Ni, “Gener-
alizing from a few examples: A survey on few-shot learning,”
arXiv: Learning, 2019.

[5] H. Chen, S. Shao, Z. Wang, Z. Shang, J. Chen, X. Ji, and
X. Wu, “Bootstrap generalization ability from loss landscape
perspective,” in ECCV Workshops, Tel Aviv, Israel, 2022.

[6] A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley,
“Sound event detection: A tutorial,” IEEE Signal Processing
Magazine, vol. 38, pp. 67–83, 2021.

[7] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks
for few-shot learning,” in Proc. NeurIPS, Long Beach, CA,
USA, 2017.

[8] M. Anderson and N. Harte, “Bioacoustic event detection with
prototypical networks and data augmentation,” arXiv preprint
arXiv:2112.09006, 2021.

[9] D. Yang, H. Wang, Z. Ye, and Y. Zou, “Few-shot bioacous-
tic event detection= a good transductive inference is all you
need,” DCASE2021 Challenge, Tech. Rep, Tech. Rep., 2021.

[10] T. Tang, Y. Liang, and Y. Long, “Two improved architectures
based on prototype network for few-shot bioacoustic event
detection,” DCASE2021 Challenge, Tech. Rep, Tech. Rep.,
2021.

[11] M. Lasseck, “Acoustic bird detection with deep convolutional
neural networks,” in Workshop on DCASE, 2018.

[12] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” in Proc. In-
terspeech, Graz, Austria, 2019.

[13] H. Liu, X. Liu, X. Mei, Q. Kong, W. Wang, and M. . Plumb-
ley, “Surrey system for dcase 2022 task 5: Few-shot bioacous-
tic event detection with segment-level metric learning,” ArXiv,
vol. abs/2207.10547, 2022.

[14] J. Liu, Z. Zhou, M. Sun, X. Kele, K. Qian, and H. Bian, “Se-
protonet: Prototypical network with squeeze-and-excitation
blocks for bioacousti c event detection,” DCASE2023 Chal-
lenge, Tech. Rep, Tech. Rep., 2023.

[15] E. Hoffer and N. Ailon, “Deep metric learning using
triplet network,” in Proc. SIMBAD, Copenhagen, Denmark.
Springer, 2015, pp. 84–92.

[16] A. V. Patil and P. Rabha, “A survey on joint object detec-
tion and pose estimation using monocular vision,” ArXiv, vol.
abs/1811.10216, 2018.

[17] W. Ge, W. Huang, D. Dong, and M. R. Scott, “Deep metric
learning with hierarchical triplet loss,” in Proc. ECCV, Mu-
nich, Germany, 2018.

[18] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
Proc. ICASSP, New Orleans, LA, USA, pp. 776–780, 2017.

[19] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P.
Bello, “Robust sound event detection in bioacoustic sensor
networks,” PLoS ONE, vol. 14, 2019.

[20] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr
– half-baked or well done?” Proc. ICASSP, Calgary, Alberta,
Canada, pp. 626–630, 2018.

[21] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-
excitation networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, pp. 2011–2023, 2017.


