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ABSTRACT

We present our solution to the DCASE 2024 challenge task 9
(Language-Queried Audio Source Separation). Our solution is
based on the official baseline, with training dataset including
FSD50k, Clotho and additionally extended with AudioCaps. We
show that the additional data improve results throughout the train-
ing process. We explore changing the ratio masking method from
spectrogram amplitude and phase to individual masks for real and
imaginary components. We also investigate how different losses,
such as Mixit loss and SDR based loss, affect the training process.

Index Terms— DCASE, audio source separation, language-
queried audio source separation

1. INTRODUCTION

Recent developments in image-text embedding architectures such
as CLIP [1] and also audio-text embedding architectures [2] have
enabled novel approaches to the problem of audio source separation
[3, 4, 5]. Among previous methods, some have limited the problem
to a set of predefined sound classes [6]. Some have focused par-
ticularly on speech [7, 8, 9] or musical instruments [10, 11]. Oth-
ers proposed to simply separate a recording into a fixed number of
sources [12], which leaves their classification to downstream pro-
cessing. Still others relied on audio-visual supervision [13], or pro-
viding example instances of the audio class to extract from mixture
[14].

In contrast, language-queried methods employ audio-text align-
ment models to produce embeddings from text prompts that are then
fed to the audio separation model [3, 4, 5]. This approach is more
practical for several reasons. First, it is more flexible than prede-
fined labels and second, text prompts are easier to generate than
visual prompts (for audio-visual models) or audio prompts (audio
prompted models). Text queries can also be combined with video
[15] or other features [16].

1.1. Evaluation submissions

We submitted outputs from 4 systems to the DCASE evaluation
server:

SRPOL system 1 This model takes real and imaginary spectro-
gram components as input and produces individual masks
for these components.

SRPOL system 2 This is the baseline, except trained for 1.5 mil-
lion steps with the original 10−3 learning rate, followed by
100 thousand steps with 10−4 learning rate.

*Equal contribution

SRPOL system 3 This is the baseline, except trained for 1.084
million steps with the original 10−3 learning rate.

SRPOL system 4 This is the baseline, except trained for 1.3 mil-
lion steps with the original 10−3 learning rate followed by
40 thousand steps with 10−5 learning rate.

1.2. Contributions

Our contributions include:

1. A comparison of training on different datasets: FSD50k with
auto-generated captions, Clotho and AudioCaps

2. A comparison of spectrogram magnitude masking and com-
plex ratio masking

3. A comparison of losses used in training - baseline l1 loss,
MixIT loss and SDR based loss

2. DATASETS

2.1. FSD50k

The FSD50k dataset [17] consists of 51197 audio clips downloaded
from Freesound, which were manually labeled with 200 classes
from the AudioSet [18] ontology. The total audio duration in
FSD50k is over 108 hours.

Challenge organizers provide text captions for FSD50k that
were auto-generated with ChatGPT from the original FSD50k la-
bels. For training we used the captions from the challenge dev
subset (fsd50k dev auto caption.json), mapping to 40966 files with
over 80 hours of audio. For validation we use the method from the
challenge evaluation script with the audio mixing recipes provided
in the lass synthetic validation.csv file.

2.2. Clotho

The original Clotho dataset [19] comprises 4981 audio clips, each
lasting between 15 to 30 seconds. The audio samples are sourced
from the Freesound platform, consisting of acoustic environments
and sound events. These clips encompass a spectrum of everyday
sounds, including natural environments, human activities, musical
instruments, mechanical noises, and more. Each audio clip is an-
notated with five different captions, ranging from 8 to 20 words in
length.

The captions were generated using a crowdsourcing approach,
involving annotators who were native English speakers and had un-
dergone specific training to ensure high-quality descriptions. Each
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annotator listened to the audio clips and provided textual descrip-
tions that accurately captured the auditory content. The annota-
tions were subsequently reviewed and refined to maintain consis-
tency and precision across the dataset.

Since the original Clotho v1.0, the authors released versions 2.0
and 2.1. In our experiments we used version 2.1 which consists of
5929 audio clips, with a total duration of over 37 hours. For training
we used the ”dev” subset, which consists of 3839 files with total
audio duration of nearly 24 hours.

2.3. AudioCaps

The AudioCaps dataset [20] contains 46,000 audio clips sourced
from the AudioSet dataset [18], each ranging from 5 to 10 seconds
in duration. These clips cover a wide variety of sound events and
environments, including natural sounds, urban noises, human activ-
ities, music, and more, ensuring comprehensive coverage of every-
day audio phenomena. Each audio clip is annotated with a detailed
caption describing the sound events present in the clip that range
from a few words to complete sentences.

The annotations were generated through a combination of hu-
man and automated processes. Initially, a subset of audio clips was
manually annotated by trained workers who listened to the clips
and provided descriptive captions. These human-generated captions
served as a basis for training a machine learning model, which was
subsequently used to generate captions for the remaining clips. This
hybrid approach leverages the accuracy of human annotation and
the scalability of automated processes.

Since AudioCaps is based on AudioSet, there is the problem of
clips that become unavailable over time. Overall, we managed to
build a dataset of 50166 files with total audio length of over 137
hours. For training we used 43703 audio files with total duration of
nearly 120 hours.

3. SYSTEM DESCRIPTION

3.1. Baseline system

The baseline system, based on AudioSep [4], was provided by
the challenge organizers. It combines a ResUNet audio separation
model with a CLAP audio-text embedding model, which is used to
provide conditioning to ResUNet. There is also a checkpoint pro-
vided, trained on the challenge development data set.

3.2. Real and imaginary ratio masking

We test replacing the original method of modeling amplitude and
phase as separate variables with modeling the real and imaginary
components of the STFT representation. More precisely, while the
baseline solution is predicting a spectrogram amplitude ratio mask
and a phase correction mask, our model directly estimates ratio
masks for the real and imaginary components:

X̂ = MRe ⊙Re (Y ) + iMIm ⊙ Im (Y ) (1)

where Y is the mixture STFT, X̂ is the estimated separated audio
STFT, MRe and MIm are the real and imaginary ratio masks.

This approach is fairly common in speech enhancement, al-
though instead of ratio masks for real and imaginary components,
the model outputs are typically interpreted as real and imaginary

components of a complex-valued mask, which is then complex-
multiplied with the mixture STFT [21]:

X̂ = Re (M)⊙Re (Y )− Im (M)⊙ Im (Y )

+ i
(
Re (M)⊙ Im (Y ) + Im (M)⊙Re (Y )

) (2)

This is often referred to as complex ratio masking (CRM). However,
our model uses the masking definition in (1) for its simplicity.

Additionally, our model takes the real and imaginary compo-
nents of the mixture STFT as input features, rather than the complex
magnitude that was used in the baseline.

3.3. MixIT Loss

MixIT [22] Loss is a training objective designed to address the chal-
lenges of audio source separation in unsupervised learning scenar-
ios. Unlike traditional methods that require clean, isolated sources
for training, MixIT Loss enables models to learn directly from
mixed audio inputs, making it suitable for real-world applications
where obtaining clean source data is impractical.

The MixIT framework operates on the principle of mixing mul-
tiple audio sources to create training mixtures. The key steps in the
methodology include:

1. Input Mixtures: Two mixtures of audio sources, x1 and x2

are combined to form a new mixture xmix = x1 + x2

2. Separation: A neural network is trained to separate xmix into
a set of components, aiming to approximate the original
sources from x1 and x2

3. Permutation Invariant Training: The separated components
are matched to the original sources in a permutation-
invariant manner, which means the order of the separated
sources does not need to match the order of the input sources.

The MixIT Loss is calculated by evaluating how well the sep-
arated components can reconstruct the original input mixtures. For
each separated component, a reconstruction of the original mixtures
x1 and x2 is created. The loss is computed as the sum of reconstruc-
tion errors between the original mixtures and their reconstructions
from the separated components. Equation 3 represents the mathe-
matical expression of the loss where ŝj are the separated compo-
nents, N is the number of separated components, and πij represents
the permutation matrix that aligns separated components to the orig-
inal mixtures. This ensures that the network learns to produce com-
ponents that can be recombined to approximate the original mix-
tures accurately.

MixITLoss = minπ(

2∑
i=1

∥xi −
N∑

j=1

πij ŝj∥2) (3)

3.4. SDR based loss

Inspired by [23] that presents a modified version of the CLAP
network, we utilized the loss used in this paper for our sys-
tem. The training loss is defined as a combination of negative
signalto-distortion ratio (SDR) and negative scale-invariant signal-
to-distortion ratio (SISDR) as shown in equation 4.

SDRLoss = −λSDR(x̂, x)− (1− λ)SISDR(x̂, x), (4)
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where

SDR(x̂, x) = 10log10(
∥x∥2

∥x− x̂∥2 ),
(5)

SISDR(x̂, x) = 10log10(
∥ ∥x̂T x∥2

∥x∥2 x∥2

∥ ∥x̂T x∥2
∥x∥2 x− x̂∥2

), (6)

where x̂ and x denote the estimated waveform and the ground truth
waveform. The λ parameter was set to 0.9 in our experiments.

4. EXPERIMENTS

We use the official baseline code for training all models. The op-
timization algorithm is Adam (AMSgrad version) [24, 25], with
learning rate set to 10−3 and with 10000 warm-up steps (except
for fine-tuning where we reduced the learning rate and switched off
warm-up). Weight decay is set to zero.

4.1. Combining datasets

The goal of this set of experiments was to determine if we could
improve the results by adding more data. First we trained the base-
line system on FSD50k data, using the captions provided by the
challenge organizers. Next, we extended the training dataset with
Clotho, and then we also added AudioCaps. The model trained on
all three datasets combined was later additionally fine-tuned on the
same data with learning rate reduced to 10−4.

4.2. Real and imaginary ratio masks

We compare the proposed method of modeling real and imaginary
components to the original baseline method of modeling amplitude
and phase.

4.3. MixIT and SDR based loss

The baseline L1 Loss, also known as Mean Absolute Error (MAE),
measures the average absolute difference between predicted and ac-
tual signal values. It is less sensitive to extreme values than L2 Loss
(Mean Squared Error), making it more robust to noise in the data
but it necessitates clean, isolated signals as training data, limiting its
applicability in scenarios with unlabelled or mixed data. Our goal
was to find better-suited loss for this task. We chose MixIT Loss be-
cause it allows training models based on mixtures of sounds without
needing access to clean source signals and SDR-Based Loss which
measures the quality of source separation based on the signal-to-
distortion ratio, considering both amplitude and phase of the signal.

5. RESULTS

5.1. Combining datasets

We present the evolution of validation SDR and SI-SDR throughout
the training process in Fig 1 and Fig 2.

The model based only on FSD50k has little improvement in
SDR past 500k training steps while also declining in SI-SDR past
this point.

With the addition of Clotho, SDR and SI-SDR grow up to 1.4
million steps of training. Both metrics are higher throughout the
training process than with FSD50k alone and the trained model is
also substantially better.
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Figure 1: Challenge FSD50k validation set SDR
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Figure 2: Challenge FSD50k validation set SI-SDR

After expanding the training dataset further with AudioCaps,
both SDR and SI-SDR were still increasing at 1.5 million steps,
which is the farthest point that we reached while training this model
with the default learning rate. This model was further fine-tuned
with reduced learning rate (10−4), which further boosted SDR and
SI-SDR, although it is possible that it could have been improved
with the original learning rate.

The fine-tuned checkpoint at 1.6 million steps (which had the
best validation SDR in this run) was used to generate the submission
referred to as SRPOL system 2.

5.2. Real and imaginary ratio masks

The results of this experiment are also presented in Fig 1 and Fig 2.
We only managed to train this model up to 1.2 million steps and up
to this point the results of this model were close to the ones attained
by the baseline trained on the same data.

The checkpoint at 1.2 million steps (which had the best valida-
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Figure 3: Challenge FSD50k validation set SDR

Figure 4: Challenge FSD50k validation set SISDR

tion SDR and SI-SDR in this run) was used to generate the submis-
sion referred to as SRPOL system 1.

5.3. MixIT and SDR based loss

Results of the loss experiments are presented in Fig 3 and Fig 4.
Each model is trained on the extended dataset (FSD50K, Clotho,
and AudioCaps). The best model is the baseline trained from
scratch on an extended dataset with L1 loss and this is the SR-
POL system 3. SRPOL system 4 is the same model but finetuned
from step 1300000 with L1 loss and learning rate 10−5. MixIT
loss achieves the worst results. SDR-based loss is better but still,
it does not achieve baseline results even after more than a million
steps. When fine-tuning the baseline model with SDR-based loss
the results are also not satisfactory.

5.4. Submitted models

The validation results for the models whose outputs were submitted
for evaluation are shown in Table 1.

Table 1: Validation results for the models submitted for evaluation

Model SDR SDRi SI-SDR

Real and Imag masks, FSD50k
+ Clotho + AudioCaps
(SRPOL system 1)

7.021 6.986 5.291

Baseline, FSD50k + Clotho
+ AudioCaps (finetune)
(SRPOL system 2)

7.398 7.363 5.551

Baseline, FSD50k + Clotho
+ AudioCaps
(SRPOL system 3)

6.181 6.146 4.188

Baseline, FSD50k + Clotho
+ AudioCaps (finetune)
(SRPOL system 4)

6.282 6.247 4.620

6. CONCLUSIONS

Our main conclusion is that the training of language-queried audio
source separation models benefits from extending the training data
set. Future work may explore expanding it further still. Another
possible direction is to explore the effect of implementing complex
ratio masking exactly (as opposed to separate masks for real and
imaginary components, as implemented in our experiments). Fur-
thermore, future experiments can be extended to include additional
types of loss functions or combinations thereof. Each loss function,
whether L1 Loss, MixIT Loss, or SDR-Based Loss, has its strengths
and limitations. Exploring new or hybrid loss functions can lever-
age these strengths and mitigate the limitations, potentially leading
to more robust and efficient training methods. Combining differ-
ent loss functions could enhance model performance by providing
a more comprehensive optimization and improving generalization
to real-world scenarios. Such explorations could lead to the devel-
opment of more sophisticated models that perform better in diverse
and challenging acoustic environments.
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