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ABSTRACT

This technical report describes the CP-JKU team’s submission
for Task 4 Sound Event Detection with Heterogeneous Training
Datasets and Potentially Missing Labels of the DCASE 24 Chal-
lenge. We fine-tune three large Audio Spectrogram Transformers,
PaSST, BEATs, and ATST, on the joint DESED and MAESTRO
datasets in a two-stage training procedure. The first stage closely
matches the baseline system setup and trains a CRNN model while
keeping the large pre-trained transformer model frozen. In the sec-
ond stage, both CRNN and transformer are fine-tuned using heavily
weighted self-supervised losses. After the second stage, we com-
pute strong pseudo-labels for all audio clips in the training set using
an ensemble of all three fine-tuned transformers. Then, in a sec-
ond iteration, we repeat the two-stage training process and include a
distillation loss based on the pseudo-labels, boosting single-model
performance substantially. Additionally, we pre-train PaSST and
ATST on the subset of AudioSet that comes with strong temporal
labels, before fine-tuning them on the Task 4 datasets1.

Index Terms— DCASE Challenge, Sound Event Detection,
ATST, BEATs, PaSST, DESED, MAESTRO, pseudo-labels

1. INTRODUCTION

The task of Sound Event Detection (SED) is to recognize and clas-
sify specific sound events in audio signals, including the tempo-
ral location of the events. Developing reliable SED systems allows
their use in important real-world applications, such as security and
surveillance [1], smart homes [2], or health monitoring [3]. A main
driver of research in this field is the annual DCASE Challenge, with
Task 4 specifically tackling Sound Event Detection. This technical
report describes the CP-JKU team’s submission to DCASE Chal-
lenge 2024 Task 4: Sound Event Detection with Heterogeneous
Training Datasets and Potentially Missing Labels [4].

State-of-the-art SED systems are based on deep learning ap-
proaches, requiring a substantial amount of annotated data. Their
performance is mainly limited by the acute lack of strongly an-
notated sound event datasets [5]. Hence, previous editions of
Task 4 focused on learning from weakly labeled data [6], semi-
supervised learning strategies [7], and utilizing synthetic strongly
labeled data [8] in an attempt to develop systems that perform well
on real-world strongly labeled sound clips. While Task 4 has been
based on the DESED dataset [8] in previous years, the key novelty
of the 2024 edition is a unified setup including a second dataset,

1Code: https://github.com/CPJKU/cpjku_dcase24

MAESTRO Real [5]. As domain identification is prohibited, the
goal is to develop a single system that can handle both datasets
despite crucial differences, such as labels with different temporal
granularity and potentially missing labels. In fact, because of the
lack of strongly annotated, high-quality real-world data, the hope
is that learning from two datasets in parallel has a synergetic ef-
fect and eventually increases the performance on both datasets, as
demonstrated for the baseline system [4].

The main contributions of this work can be summarized in
the following points: (1) We demonstrate that multiple differ-
ent pre-trained transformer models (ATST [9], PaSST [10], and
BEATs [11]) can be fine-tuned on the Task 4 datasets to achieve
high performance. (2) Pre-training on the temporally-strong anno-
tated portion of AudioSet [12] (AudioSet strong) can improve per-
formance for the frame-wise pre-trained model ATST and is nec-
essary for the clip-wise pre-trained PaSST to obtain high-quality
frame-wise predictions. (3) Combining fine-tuned ATST, PaSST,
and BEATs models leads to a diverse ensemble that can be used to
create high-quality pseudo-labels. (4) Using the computed pseudo-
labels in a second training iteration dramatically improves single-
model performance, leading to a relative increase of 25.6% in terms
of polyphonic sound detection score [13, 14] (PSDS1) on DESED
and 2.7% in terms of segment-based mean partial area under the
ROC curve (mpAUC) on MAESTRO compared to the baseline sys-
tem. On DESED, we achieve a new state-of-the-art performance on
the public evaluation set, increasing the single-system performance
from .686 [13] to .692 in terms of PSDS1.

2. DATASETS

The development set is composed of two datasets: DESED [8] and
MAESTRO Real [5]. For common processing, all audio in the train-
ing set is converted to clips of 10 seconds in length. For the MAE-
STRO dataset, we strictly follow the train-test-validation split es-
tablished by the baseline system [4]. As for DESED, we use the
following subsets:

• Weakly labeled: clip-wise labels, 1,267 / 158 for train. / valid.
• Unlabeled: 13,057 unlabeled clips
• Synthetic strong: 10,000 / 2,500 strongly labeled synthetic

clips for train. / valid.
• AudioSet strong: 3,435 strongly labeled real clips
• External strong: 6,426 / 957 additional strongly labeled real

clips for train. / valid. from AudioSet strong as used in [15]
• Test: 1,168 strongly labeled real clips as in baseline setup [4]

https://github.com/CPJKU/cpjku_dcase24
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Figure 1: Overview of System Architecture.

We noticed that the provided AudioSet strong subset overlaps
with weakly labeled, unlabeled, and test sets. Therefore, we remove
1,355 files from the unlabeled set and 153 files from the weakly la-
beled set to avoid oversampling individual audio clips. Addition-
ally, we remove the 35 files that overlap with the test set from the
AudioSet strong set to obtain a more accurate estimate of the gen-
eralization performance.

2.1. Cross mapping sound event classes

To exploit the fact that the DESED and MAESTRO classes are not
fully disjoint but partly represent the same concepts, the baseline
system introduces class mappings. For example, when the classes
people talking, children voices, or announcement are active in a
MAESTRO clip, the corresponding DESED class Speech is set to
the same confidence value.

In addition, we also include a mapping from MAESTRO
classes to DESED clips. Specifically, we set the values of the
MAESTRO classes cutlery and dishes and people talking to 1 if
the DESED classes Dishes and Speech are present. This is also per-
formed for weak class labels.

3. SYSTEM ARCHITECTURE

Figure 1 depicts an overview of our SED system. The system is
very similar to the baseline [4]. However, besides BEATs [11], we
experiment with two additional Audio Spectrogram Transformers,
ATST [9] and PaSST [10]. Section 3.2 introduces modifications to
the PaSST architecture for allowing high-quality frame-wise pre-
dictions, and in Section 4.1, we describe pre-training of PaSST and
ATST on AudioSet strong. In addition to adaptive average pooling,
we experiment with linear and nearest-exact interpolation to align
transformer and CNN sequence lengths. The BiGRU block consists
of two bidirectional GRU layers with a dimension of 256.

3.1. ATST-Frame

ATST-Frame [16](denoted only ATST in the following) was specif-
ically designed to produce a sequence of frame-level audio embed-
dings instead of a single global clip-level representation and is thus
particularly suited for SED. The architecture of ATST is based on
that of the Audio Spectrogram Transformer (AST) [17] and it is
trained in a self-supervised manner via masked spectrogram mod-
eling in a student-teacher scheme on AudioSet. In our experiments,
we use a checkpoint of ATST that is further fine-tuned on the weak
labels of AudioSet.

3.2. fPaSST

The Patchout faSt Spectrogram Transformer (PaSST) [10] is an im-
proved version of the original AST [17] that shortens the train-
ing time and improves the performance via patchout regularization.
PaSST uses global classification tokens, which are ideal for tag-
ging and classification tasks but are not designed for inferring the

Figure 2: Overview of Training Pipeline.

precise temporal occurrence of acoustic events. We thus adopt the
architecture of PaSST to return frame-level predictions and call the
resulting model Frame-PaSST (fPaSST). fPaSST uses three input
convolutions to convert the input spectrogram to a tensor of size
16 × 128 × 250 (channel × frequency × time). The result is then
converted to 250 768-dimensional tokens via another convolution
with kernel size 128×2. We modify the positional encoding accord-
ingly and initiate all parameters except the first three convolutions
with parameters taken from a vision transformer. We pre-trained the
resulting model on the weakly annotated AudioSet using Knowl-
edge Distillation as described in [18], obtaining a mAP of 0.484.

3.3. BEATs

Likewise, BEATs [11] is also based on the AST [17] architec-
ture; it takes rectangular spectrogram patches as input and returns
one embedding vector for each, making it suitable for SED. The
model was trained in an iterative, self-supervised procedure where
the BEATs encoder learned representations from a frozen audio-
tokenizer model that was itself learned from the BEATs encoder
after every iteration. In our experiments, we rely on the checkpoint
of BEATs after the third iteration, where both the tokenizer and the
encoder were fine-tuned on the weak labels of AudioSet.

4. TRAINING PIPELINE

In this section, we describe the pre-training routine on AudioSet
strong and how the pre-trained models are fine-tuned on the Task
4 datasets in a multi-iteration, multi-stage training procedure. An
overview of the full training pipeline is shown in Figure 2. The
multi-stage setup closely follows the strategy outlined in [19], and
a multi-iteration setup with learning from pseudo-labels showed to
improve performance drastically in [20] and [21]. In the following,
we abbreviate Iteration {1,2} and Stage {1,2} as I{1,2} and S{1,2},
respectively.

4.1. Pre-Training on AudioSet strong

We hypothesize that the audio embedding models would benefit
from additional pre-training on a large dataset strongly annotated
for various acoustic events. To this end, we add a BiGRU block
with 1024 units that processes the output of fPaSST or ATST. We
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train both models for 10 epochs on AudioSet strong [22], a sub-
set of AudioSet that holds around 86.000 strongly labeled examples
with annotations for 456 event classes. The learning rate for the
pre-trained ATST and PaSST encoders is linearly increased from 0
to 4e-5, while the learning rate for the uninitialized BiGRU block
is linearly decayed from 1e-3 to 4e-5 in the first four epochs. We
select the checkpoint with the highest PSDS1 score on the AudioSet
strong validation set for Task 4 downstream training.

4.2. Multi-Stage Training

I1 and I2 are both split into two training stages. In S1, the CNN and
BiGRU are trained from scratch while the large transformer model
is kept frozen. This setup corresponds to the training of the baseline
system with slightly different hyperparameters and additional data
augmentations.

In S2, the CNN and BiGRU are initialized with pre-trained
weights from S1, and the transformer model is fine-tuned. As the
system already performs well in its initial state, the transformer can
rely on high-quality self-supervised loss computed on the larger un-
labeled set. Aligned with [19], in S2, we compute interpolation
consistency loss [23] in addition to the mean teacher loss.

In both stages, we choose the best model based on the validation
metrics of the student. Specifically, we compute the sum of PSDS1
on the strongly labeled synthetic data, PSDS1 on external strongly
labeled real data, and mpAUC on the MEASTRO validation set.

4.3. Multi-Iteration Training

After completing I1, we build an ensemble (see Ensemble Stage 2
in Table 2) of multiple ATST, fPaSST, and BEATs models. This en-
semble is used to compute strong pseudo-labels for all audio clips in
the training set by averaging the frame-wise logits of the individual
models. In S1 of I2, we then compute BCE between the model’s
predictions and the pseudo-labels as an additional loss term. We
found that BCE is superior to MSE, and interestingly, using the
pseudo-label loss only helps in S1 of I2. We hypothesize that the
CRNN picks up relevant information from the pseudo-labels in S1
and transfers it to the transformer model via the high self-supervised
loss weights in S2 of I2.

5. EXPERIMENTAL SETUP

5.1. Audio Pre-processing

For all models, we resample audio clips at 16 kHz. For the CNN,
we match the baseline settings and compute mel spectrograms with
128 mel bins using a window length of 128 ms and a hop size of
16 ms. For ATST, fPaSST, and BEATs, we match the pre-training
setup and compute mel spectrograms with 64, 128, and 128 mel
bins, respectively. All transformers use a hop size of 10 ms; the
window size of fPaSST and BEATs is set to 25 ms; and for ATST,
it is 64 ms.

5.2. Data Augmentation

Table 1 presents in detail all the data augmentation methods we use
in our training pipeline. In contrast to the baseline, we apply Cross-
Dataset Mixup and Cross-Dataset Freq-MixStyle. That is, we mix
audio clips from MAESTRO and DESED instead of keeping them
separate. In the case of Mixup, we modify the class mask and allow
the loss to be calculated for all active classes, irrespective of the
audio clip’s dataset origin. For Wavmix and Mixup, we mix the
pseudo-labels accordingly.

Aug. Method Target HP Pipeline

DIR [24] All p=0.5 I{1,2}.S2
Wavmix [25] Str. p=0.5,α=0.2 I{1,2}.S{1,2}

Freq-MixStyle [26] All p=0.5,α=0.3 I1.S{1,2},I2.S2
Mixup [25] All p=0.5,α=0.2 I{1,2}.S{1,2}
Time-Masking DES. Str. s=[0.05,0.3] I{1,2}.S2
FilterAugment [27] All linear,p=0.8 I1.S{1,2},I2.S2
Freq-Warping [9] All p=0.5 I{1,2}.S2

Table 1: The table lists data augmentation methods, the data subset
they are applied to (Target), hyperparameters (HP), and the respec-
tive iteration and stage they are used in (Pipeline). p is the proba-
bility for applying the augmentation method; α parameterizes Beta
distributions; and Str. refers to strongly annotated audio clips.

5.3. Data Sampling and Optimization

We summarize the training data in five subsets: MAESTRO,
DESED real strong, synth. strong, weakly annotated, and unla-
beled. In S1, we draw batches of (12, 10, 10, 20, 20) samples,
and in S2, we draw batches of (56, 40, 40, 72, 72) samples from
these datasets. The model needs to optimize six losses in parallel:
MAESTRO strong, DESED real strong, synth. strong, weak, self-
supervised loss, and pseudo-label loss. Besides the MSE loss used
for the self-supervised loss, the BCE loss is computed for all others.
We compute a weighted sum of all losses and tune the individual
weights for all iterations and stages. In contrast to the baseline, we
also compute the self-supervised loss on MAESTRO clips.

We use the AdamW [28] optimizer with weight decays of 1e-
2 and 1e-3 in S1 and S2, respectively. Learning rates are listed in
Table 2.

5.4. Postprocessing

For model selection and hyperparameter tuning, we stick with the
class-wise median filter used in the baseline system [4]. After se-
lecting models for submission, we apply the recently introduced
Sound Event Bounding Boxes [29] method for post-processing. We
use class-wise parameters and obtain them by using linearly spaced
search grids (8 values) for step filter length (0.38 to 0.66), relative
merge threshold (1.5 to 3.25), and absolute merge threshold (0.15 to
0.325). We follow the strategy of the baseline [4] and tune these hy-
perparameters on the development-test set, as the class-wise median
filter lengths of the baseline system are tuned on the development-
test set as well.

6. RESULTS

In this section, we present the results of the described models (Sec-
tion 3) in the introduced training pipeline (Section 4). In Sec-
tion 6.1, systems selected for submission are presented.

Table 2 lists the results for the best configuration of each model
in terms of sequence length adaptation method (Seq.) and learning
rate in each iteration and stage. Furthermore, the CNN (lr cnn),
RNN (lr rnn), and Transformer (lr tf) learning rates are listed.
lr dec describes layer-wise learning rate decay for the Transformer
models as used in [19].

In I1.S1, in which the transformer models are frozen, BEATs
seems to extract the embeddings of the highest quality, followed by
fPaSST and ATST. I1.S1 with BEATs is very similar to the baseline
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Model lr cnn lr rnn lr tf lr dec Seq. mpAUC PSDS1 Rank Score

Iteration 1

Stage 1
ATST 1e-3 1e-3 - - int. lin. 0.702 ± 0.008 0.493 ± 0.012 1.195 ± 0.012
fPaSST 1e-3 1e-3 - - int. nearest 0.709 ± 0.021 0.502 ± 0.010 1.212 ± 0.027
BEATs 1e-3 1e-3 - - int. nearest 0.719 ± 0.004 0.509 ± 0.003 1.228 ± 0.006

Stage 2
ATST 1e-4 1e-3 1e-4 0.5 int. nearest 0.739 ± 0.017 0.520 ± 0.005 1.259 ± 0.020
fPaSST 1e-4 1e-3 1e-4 1 int. nearest 0.726 ± 0.021 0.514 ± 0.008 1.24 ± 0.027
BEATs 1e-4 1e-3 1e-4 1 int. lin. 0.713 ± 0.002 0.539 ± 0.004 1.252 ± 0.003

Ensemble Stage 2 - - - - mix 0.735 0.569 1.303

Iteration 2

Stage 1
ATST 5e-4 5e-4 - - avg. pool 0.741 ± 0.017 0.536 ± 0.006 1.277 ± 0.012
fPaSST 5e-4 5e-4 - - int. nearest 0.722 ± 0.011 0.526 ± 0.004 1.248 ± 0.012
BEATs 5e-4 5e-4 - - int. nearest 0.724 ± 0.011 0.537 ± 0.005 1.262 ± 0.010

Stage 2
ATST 1e-5 1e-4 1e-4 0.5 avg. pool 0.75 ± 0.004 0.548 ± 0.004 1.298 ± 0.006
fPaSST 5e-5 5e-4 1e-4 1 int. nearest 0.719 ± 0.013 0.539 ± 0.003 1.259 ± 0.015
BEATs 5e-5 5e-4 1e-4 1 int. nearest 0.7286 ± 0.005 0.557 ± 0.005 1.286 ± 0.009

Table 2: The table presents the results of ATST, fPaSST, and BEATs for both iterations and stages. For each model, we list the best
configuration in terms of the sequence length adaptation method (Seq.). Ensemble Stage 2 is used to generate the pseudo-labels for Iteration
2. Rank Score denotes the sum of mpAUC and PSDS1.

ID Models # Dev-Test mpAUC PSDS1 MF PSDS1 SEBB Eval PSDS1 SEBB

S1 ATST I2.S2 1 ✗ 0.749 0.548 0.617 0.684

S2 ATST I2.S2 1 ✓ - - - 0.692

S3 Ensemble I2.S1 + I2.S2 18 ✗ 0.743 0.569 0.632 0.721

S4 Ensemble I2.S1 + I2.S2 15 ✓ - - - 0.729

Table 3: Final Submissions: # lists the number of models; the flag Dev-Test indicates that we use the full development set for training; PSDS1
MF lists results with a median filter; PSDS1 SEBB lists DESED test set results using SEBB postprocessing [29]; and Eval PSDS1 SEBB
lists results on the public evaluation set with SEBB postprocessing.

setup [4] and achieves a similar rank score with a slight performance
increase in our setup.

Compared to the rank scores in I1.S1, in I1.S2, all three trans-
formers demonstrate a large increase in rank score when fine-tuned
on the Task 4 datasets. Notably, the three transformer models have
different strengths, with ATST achieving the best score on MAE-
STRO clips while BEATs obtains the best score on DESED clips.
Ensemble Stage 2 denotes an ensemble of 46 models resulting from
I1.S2, including ATST, fPaSST, and BEATs trained in different con-
figurations. While the performance in terms of PSDS1 benefits
largely from ensembling a large number of models, the mpAUC
is even slightly worse compared to the best single model after I1.S2
(ATST). We use Ensemble Stage 2 to generate strong pseudo-labels
for all audio clips in the dataset.

The additional pseudo-label loss in I2.S1 boosts performance
substantially, with all three transformers achieving higher perfor-
mance in I2.S1 in terms of rank score compared to I1.S2. Interest-
ingly, ATST, which achieves the lowest performance in I1.S1, has
the highest performance in I2.S1 outperforming the other models in
particular on the MAESTRO clips.

The top rank scores for all models are achieved in I2.S2, with
ATST obtaining the best single-model performance. Notably, the
pseudo-label loss is not used in I2.S2, as it does not increase the
rank score, demonstrating that a well-trained CRNN from S1 is in-
strumental for high performance in S2.

6.1. Final Submissions

For the final submissions shown in Table 3, we select the top single-
model, ATST, after I2.S2, and build an ensemble consisting of

ATST, fPaSST, and BEATs models obtained in I2. We repeat the
full training process for the two selections and include the test data
of MAESTRO and DESED for training to make use of the full de-
velopment set. In this case, model selection still relies on validation
metrics.

As described in Section 5.4, we use SEBBs [29] instead of a
class-wise median filter for postprocessing the predictions of all
submissions. The resulting performance is listed in Table 3. PSDS1
MF and PSDS1 SEBB denote the performance on the DESED test
set with median filter and SEBB, respectively. Although the median
filter lengths of the baseline system are also tuned on the test set, we
note that PSDS1 SEBB results should be taken with a grain of salt,
as the SEBB hyparameters are tuned on the test set. We therefore
also report the results on the unseen DESED public evaluation set
(Eval PSDS1 SEBB). Notably, our best single model (S2) improves
the state-of-the-art PSDS1 score on the public evaluation set from
0.686 [29] to 0.692. The submitted ensembles (S3 & S4) clearly
improve over the single models (S1 & S2) in terms of PSDS1, but
interestingly, mpAUC cannot be improved by ensembling.
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