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ABSTRACT 

This technical report, we describe our proposed system for 
DCASE2024 task3: Sound Event Localization and Detec-
tion(SELD) with Source Distance Estimation in Real Spatial 
Sound Scenes. At first, we review the famous deep learning meth-
ods in SELD. To augment our dataset, we employ channel 
rotation techniques. In addition to existing features, we in-
troduce a novel feature: the sine value of the inter-channel 
phase difference. Finally, we validate the effectiveness of 
our approach on the Sony-TAU Realistic Spatial Sound-
scapes 2023 (STARSS23) dataset and the results demon-
strate that our method outperforms the baseline across mul-
tiple metrics. 

Index Terms— sound event localization and detection, 
Data augmentation, model ensemble, real spatial scenes 

1. INTRODUCTION 

The objective of the Sound Event Localization and Detection 
(SELD) task is to detect occurrences of sound events from specific 
target classes, track their temporal activity, and estimate their di-
rections-of-arrival (DOA) or positions. Given multichannel audio 
input, a SELD system outputs localization estimates of one or 
more events for each target sound class whenever such events are 
detected [1]. This process results in a spatial temporal characteri-
zation of the acoustic scene, which can be applied to a wide range 
of machine cognition tasks. These tasks include environmental in-
ference, self-localization, navigation with visually occluded tar-
gets, tracking specific types of sound sources, smart-home appli-
cations, scene visualization systems, and acoustic monitoring, 
among others [2,3]. 
The SELD system was first introduced in the DCASE2019 Task 3, 
focusing on single static sound sources. In this task, multichannel 
audio files were synthesized by combining mono audio files with 
impulse responses in real rooms, allowing manual control over 
factors such as signal-to-noise ratio (SNR), event occurrence, and 
arrival direction. However, subsequent SELD challenges intro-
duced several new complexities, including new impulse responses, 
moving sources, polyphonic events, and overlapping events of the 
same class [4,5,6,7]. This year, the challenge introduces distance 

estimation of the detected events [8], significantly increasing the 
task's difficulty. Evaluation metrics have also been updated to ac-
count for this additional dimension. 
In this report, we propose a SELDnet-based neural network with 
data augmentation for SELD. The entire framework of our SELD 
system is built upon two main components: SELDnet and multi-
track ACCDDOA [9,10]. SELDnet is a neural network architec-
ture that integrates spatial information with spectrogram represen-
tations to accurately classify and localize sound events. The multi-
track ACCDDOA algorithm addresses same-class overlapping 
sound events and extracts precise localization information for each 
event. To prevent the model from overfitting on the synthesized 
data, we employ a strategy of training the model on a combination 
of real and synthesized data, followed by fine-tuning on real re-
cordings. 

2. PROPOSED METHOD 

In this section, we first introduce the input features of the pro-
posed SELD system. Then we introduce the data augmentation, 
network architecture and training procedures. 

2.1. Features 

Our network’s input features consist of signals from four channels 
of first-order ambisonics (FOA). We emphasize using FOA sig-
nals because they do not contain spatial aliasing within the range 
of 9 kHz. Additionally, the FOA format was preferred as it out-
performed the MIC format in the baseline system. The FOA fea-
tures comprise ten channels, including four log-mel spectrograms 
and three intensity vectors. Furthermore, we introduce a new fea-
ture set [11]: the sine values of the phase differences of the Short-
Time Fourier Transform (STFT) after passing through a mel filter 
bank. This new feature set, which includes three channels, is pro-
cessed through the mel filter bank to ensure the dimensions are 
consistent with the other feature sets. 

2.2. Data augmentation 

Since the dataset provided by DCASE comprises only 1200 syn-
thetic files, we augmented the training data to enhance the 
model’s performance. Table 1 shows 16 patterns of channel   rota-
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Table 1: 16 patterns of channel rotation. Swap(X, Y) denotes 'X Y←  and 'Y X←  

 

 
 

Figure1: Overall architecture of the proposed network. 
 

tion [12], but we applied eight spatial transformation methods, 
chosen  to rotate the audio channels in a way that transforms θ to 
−θ, resulting in a more uniform distribution of. This approach en-
sures a more balanced spatial representation. During the channel 
rotation, we also adjusted the spatial labels accordingly, but the 
distance labels remained unchanged. Because we performed two 
different channel rotations for each audio file, we tripled the 
amount of training data. 

2.3. Network architecture 

The model was created based on the baseline CRNN structure, 
incorporating the multi-activity-coupled Cartesian Distance and 
DOA (multi-ACCDDOA) format. This format extends the known 
multi-ACCDOA format by including distance in the estimated 
vector. Figure 1 shows the overall structure of the proposed model. 
The primary aim of our network is to extract spatial information 
from the given input of FOA features. This is achieved by feeding 
the log-mel spectrograms from all four FOA channels, along with 
the IV channels and sin-IPD, into a convolutional network com-
prising three layers. The multi-ACCDDOA format can predict 
Sound Event Detection (SED), Direction of Arrival (DOA), and 
distance through a single branch. Additionally, bidirectional GRU 
layers are replaced with two Conformer blocks [13]. 

3. EXPERIMENTS 

In this section, we show our results on the development dataset. 

3.1. Experimental settings 

We evaluated our proposed methods on the Sony-TAU Realistic 
Spatial Soundscapes 2023 (STARSS23) dataset and compared our 
systems with the baseline system. The baseline is a multi-
ACCDDOA-based system using a CRNN network. Three metrics 
are used for evaluation: macro

20 /1
F ° , DOAE, RDE. We use only 

the FOA subset of the dataset for out experiments. 

We followed the baseline settings during feature extraction. The 
sampling frequency was set to 24kHz, the number of Mel filters 
was set to 64, and the STFT was applied with a 40ms frame length 
and a 20ms frame hop. The input length was set to 250 frames, and 
we used a batch size of 64. In addition to these settings, we incor-
porated the computation of the sine of the IPD values to smooth 
phase variations. The training process involved initially training 
on the synthesized dataset for 150 epochs with a learning rate of 
0.001. The learning rate decayed by 0.5 every 50 epochs. During 
the fine-tuning phase, the model was trained on the real dataset for 
30 epochs with a learning rate of 0.00005. 

3.2. Results.  

Table 2 shows the performance of our proposed methods on the 
development set. As indicated in the table, our proposed method 
significantly outperforms the baseline in terms of 

20 /1
F °  and 

DOAE. However, it is important to note that the RDE metric did 
not show an improvement over the baseline. 
 

4. CONCLUSION 

We present the proposed SELD system of DCASE2024 task3. We 
apply data augmentation methods and three additional channels 
of phase information to augment the training data. Considering 
the differences between simulated spatial audios and real record-
ings in exclusive environments, we employed different strategies 
during the training stage to improve the system's generalization in 
realistic environments. Our proposed system achieved substantial 
improvements and significantly outperformed the baseline system 
across multiple metrics. 
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SELD performance of our systems evaluated by using joint metrics for the development set 
system macro F20◦/1 (%)↑ DOAE(°) ↓ RDE(%)↓ 

baseline-FOA 13.1% 36.9° 33% 
model1 29.2% 20.7° 47% 
model2 21.7% 26.5° 48% 
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