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ABSTRACT

In this report, we summarize our approach for DCASE 2024 Chal-
lenge Task 10, acoustic-based traffic monitoring. Our approach
consists of two improvements from the baseline system. One is
the introduction of the matching loss for the ranking function to
the loss function of the Convolutional Recurrent Neural Network
(CRNN), which aims to improve the Kendall’s Tau Rank Correla-
tion (KTRC). The results indicate that it is also effective in improv-
ing the Root Mean Square Error (RMSE). The other improvement
is a change in the input features. We also report the estimation per-
formance for the development datasets.

Index Terms— traffic monitoring, vehicle detection, deep neu-
ral network, acoustic sensing, microphone array

1. INTRODUCTION

This report provides the description of our submitted system for the
DCASE 2024 Challenge Task 10, which focuses on acoustic-based
traffic monitoring. The goal of this task is to count the number of
vehicles per vehicle type (car or Commercial Vehicle, CV) and per
direction of travel (left or right) [1]. Additionally, this task will in-
vestigate the effectiveness of data augmentation by an open-source
road acoustic simulator [2].

In this task, the performance is evaluated using two metrics:
Root Mean Square Error (RMSE) and Kendall’s Tau Rank Cor-
relation (KTRC). Although RMSE is directly utilized as the loss
function for training the neural network, it is not straightforward to
determine the appropriate loss function for optimizing KTRC. Our
proposed method aims to improve KTRC by incorporating a match-
ing loss [3] for the ranking function into the loss function. We also
compared several combinations of input features and loss functions
for acoustic-based traffic monitoring. Additionally, we evaluated
the estimation performance of our system with and without pre-
training.

We conduct an experimental evaluation of our method using
the training, validation, and synthetic data from the development
dataset of DCASE 2024 Challenge Task 10. As a result, our ap-
proach of introducing matching loss showed some improvements
not only in KTRC but also in RMSE. In addition, we confirmed that
pre-training improves the estimation performance.

This report is organized as follows. In Section 2, we describe
our acoustic-based traffic monitoring method. In Section 3, we

show the experimental evaluations and the results. In Section 4,
we summarize this report.

2. PROPOSED METHOD

We investigated input features and loss functions that are more ef-
fective than those used in the baseline system. Specifically, we
compared several combinations of input features and loss functions
and submitted the best-performing combination as our proposed
method. This section describes the input features and loss functions
used in the experiments.

2.1. Input feature

We considered the following input features in our experiments in
Section 3. The idea of considering these input features came from
the baseline system and our previous work [4, 5]. Here, xi is the
input acoustic signal of the ith channel (i = 1, 2, 3, 4), and the
short-time Fourier transform spectrogram Xi of the xi is calculated
using the following equation:

Xi = STFT(xi). (1)

Here, STFT : RN → CF×T in (1) represents the short-time
Fourier transform that transforms an N sample time signal into a
spectrogram with a frequency bin number F× time frame number
T .

LogMelSpec: XLMS
i ∈ RM×T is obtained by taking the loga-

rithm of the short-time power spectrogram’s magnitude af-
ter remapping Xi’s frequency to the mel scale (logarithmic
transformation of the frequency bands). Here, M specifies
the number of frequency bands in the LogMelSpec.

LogPowSpec: XLPS
i ∈ RF×T , where the (f, t) element

XLPS
i (f, t) is calculated using the following equation:

XLPS
i (f, t) = 10 log10(|Xi(f, t)|2). (2)

Here, f and t are indices in the frequency and time direc-
tions, respectively, and Xi(f, t) denotes the (f, t) element
of Xi (the same notation applies to other matrices).
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GCC-PHAT: XGCC
i,j ∈ RG×T , where the (τ, t) element

XGCC
i,j (τ, t) is calculated using the following equation:

XGCC
i,j (τ, t) = F−1

f→τ

Xi(f, t)X
∗
j (f, t)

|Xi(f, t)||Xj(f, t)|
. (3)

Here, F−1
f→τ is the inverse Fourier transform from f to τ .

The j is the number of a different channel from i (j =
1, 2, 3, 4). G specifies the number of GCC-PHAT coeffi-
cients. The time difference of arrival (TDOA), i.e., the lag
time between ith and jth channels, can be estimated by find-
ing the maximum peak of XGCC

i,j (τ, t) [6].

PhaseDiff: XPD
i,j ∈ R2×F×T is calculated using the following

equations:

∆ϕi,j(f, t) = arg(Xi(f, t)/Xj(f, t)), (4)

XPDC
i,j (f, t) = cos(∆ϕi,j(f, t)), (5)

XPDS
i,j (f, t) = sin(∆ϕi,j(f, t)), (6)

XPD
i,j = Stack(XPDC

i,j ,XPDS
i,j ). (7)

As for the phase difference in (4), the effect of its periodicity
on the input features is ignored by computing cos and sin as
in (5) and (6). The Stack in (7) stacks the arrays XPDC

i,j and
XPDS

i,j in the direction of the newly added channel dimen-
sion.

2.2. Loss function

We considered the following two loss functions, MSE and Match-
ing, in our experiments in Section 3. The idea of considering
MSE came from the baseline system, and that for Matching came
from the motivation to improve KTRC. Here, for each data index
k = 1, . . . ,K with the batch size K ∈ N, y(∗)

k , ŷ
(∗)
k ∈ R de-

notes respectively the true and estimated vehicle counts correspond-
ing to the label (∗) ∈ {car-l2r1, car-r2l2,CV-l2r3,CV-r2l4}, and
y(∗), ŷ(∗) ∈ RK denotes respectively the collection of true and
estimated data for all index k = 1, . . . ,K.

MSE: LMSE is calculated using the following equation:

LMSE(ŷ
(∗);y(∗)) =

1

K

K∑
k=1

(y
(∗)
k − ŷ

(∗)
k )2. (8)

Matching: LMatching is calculated using the following equation:

LMatching(ŷ
(∗);y(∗))

=
1

K2

(
1

2

K∑
k=1

K∑
l=1

|ŷ(∗)
k − ŷ

(∗)
l | −

K∑
k=1

[φ(y(∗))]kŷ
(∗)
k

)
.

(9)

Here, φ : RK → ZK is referred to as the ranking function,
defined as

φ(y(∗)) =

K∑
k=1


sign(ŷ

(∗)
1 − ŷ

(∗)
k )

...
sign(ŷ

(∗)
K − ŷ

(∗)
k )

 . (10)

1Number of passenger vehicles going left to right per minute.
2Number of passenger vehicles going right to left per minute.
3Number of commercial vehicles going left to right per minute.
4Number of commercial vehicles going right to left per minute.

Intuitively, [φ(y(∗))]k denotes the number of elements
smaller than ŷ

(∗)
k subtracted by the number of elements

larger than ŷ
(∗)
k . Therefore, φ maps the ranking of the input

vector y(∗) into the integers within {−K + 1, . . . ,K − 1}.
Note that LMatching is convex with respect to the first vari-
able ŷ(∗), and the subgradient of LMatching is given by

∇LMatching(ŷ
(∗);y(∗)) =

1

K2

(
φ(ŷ(∗))− φ(y(∗))

)
.

(11)

It means that the minimization of LMatching induces the cor-
respondence between φ(ŷ(∗)) and φ(y(∗)), that is, the rank-
ing of the true and estimated data. A mathematical relation-
ship such as that between the loss function LMatching and
the vector-valued function φ is generally referred to as the
matching loss [3]. Motivated by this concept, we incorpo-
rated the matching loss for the ranking function as described
above to improve the correspondence between the ranking of
the true and estimated data.

3. EXPERIMENTAL EVALUATIONS

In this section, we report the results of our experimental evaluation
for the development dataset of the DCASE challenge task 10 using
the input features and loss functions described in Section 2.

3.1. Experimental conditions

Our system builds upon the baseline system provided by the orga-
nizers, incorporating several modifications. We trained our model
using the training, validation, and synthetic data from the develop-
ment dataset and evaluated it using the validation data. The eval-
uation was conducted across all locations, and we maintained the
baseline system’s method for generating synthetic data.

Two feature patterns, LogMelSpec+GCC-PHAT and Log-
PowSpec+PhaseDiff, combining amplitude-related and phase-
related features, were used as input features. The sampling fre-
quency Fs was 16 kHz, the STFT frame length N was 1024 points
(64 ms), and the frameshift was 160 points (10 ms) for a 1-min sig-
nal. When the signal length L = 60 s, F = ⌊N/2⌋+ 1 = 513 and
T = ⌈L · Fs/(N/2)⌉ = 1875. The number of frequency bands M
of LogMelSpec was set to 48 and the number of coefficients G of
GCC-PHAT was set to 96.

As for our neural network architecture, we employed a slightly
modified version based on the baseline system CRNN. We used six
Conv2D layers of convolutional encoders, each with filters 32-32-
64-64-128-128 and a kernel size of (5, 5) and a stride of 2 in both
dimensions. When using PhaseDiff as the input feature, the shape
of the input feature is formed into R12×F×T by stacking a total of
six patterns of combinations of the ith and jth channels along the
channel dimension direction stacked in (7).

Two loss patterns, MSE and MSE+Matching, were used as
loss functions, no weights were given between estimated labels and
between losses, and the batch size K was set to 16. During training,
the learning rate for pre-training and without pre-training learning
was set to 0.00005, and the learning rate for fine-tuning was set
to 0.0005, optimized by Adam [7]. We trained the model for 100
epochs and selected the best checkpoint based on validation loss.
KTRC and RMSE were used as evaluation metrics and were evalu-
ated for four estimated labels: car-l2r, car-r2l, CV-l2r, and CV-r2l.
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3.2. Experimental results

Tables 1 to 6 show the performance of vehicle counts for each lo-
cation with pre-training. These results show that estimation per-
formance varies significantly from location to location and that the
best combination of input features and loss functions also varies.
When the MSE+Matching was introduced as the loss function and
the LogPowSpec+PhaseDiff as input features, the estimation per-
formance was promising, particularly for locations 2 and 6. There-
fore, we have chosen this as our proposed method and submitted
the proposed system to DCASE 2024 Challenge Task 10. Our pro-
posed MSE+Matching loss showed some improvements not only
in KTRC but also in RMSE.

Table 7 show the performance of vehicle counts for location 6
without pre-training. Tables 6 and 7 confirm that pre-training im-
proves estimation performance.

4. CONCLUSIONS

This report summarizes our approach for DCASE 2024 Challenge
Task 10, acoustic-based traffic monitoring. Our approach of intro-
ducing matching loss for the ranking function into the CRNN’s loss
function showed some improvements not only in KTRC but also in
RMSE. Our proposed method, which introduces matching loss as
the loss function, along with logarithmic power spectrogram and the
cosine and sine of the phase difference as input features, performed
well on the development dataset, particularly for locations 2 and 6.
In addition, experimental evaluation confirmed that pre-training im-
proves estimation performance. Improving estimation accuracy in
locations with low estimation accuracy is a future work.
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Table 1: Performance of vehicle counts for location 1 with pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

1 LogMelSpec+GCC-PHAT MSE ✓ 0.415 0.423 0.164 0.153 2.619 2.966 0.999 0.901
1 LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.392 0.447 0.136 0.172 2.662 2.914 0.922 0.868
1 LogPowSpec+PhaseDiff MSE ✓ 0.39 0.455 0.182 0.129 2.689 2.894 0.88 0.884
1 LogPowSpec+PhaseDiff MSE+Matching ✓ 0.403 0.433 0.13 0.118 2.642 2.946 0.949 0.875

Table 2: Performance of vehicle counts for location 2 with pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

2 LogMelSpec+GCC-PHAT MSE ✓ 0.768 0.409 0.201 0.026 1.868 2.627 0.815 0.678
2 LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.685 0.376 0.086 -0.002 2.466 2.832 0.862 0.715
2 LogPowSpec+PhaseDiff MSE ✓ 0.685 0.462 -0.003 0.015 2.501 2.478 0.863 0.729
2 LogPowSpec+PhaseDiff MSE+Matching ✓ 0.774 0.623 0.128 0.179 1.9 1.951 0.824 0.623

Table 3: Performance of vehicle counts for location 3 with pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

3 LogMelSpec+GCC-PHAT MSE ✓ 0.545 0.578 0.197 0.381 1.739 1.281 0.3 0.199
3 LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.548 0.584 0.081 -0.008 1.73 1.275 0.308 0.22
3 LogPowSpec+PhaseDiff MSE ✓ 0.557 0.584 0.191 0.226 1.726 1.286 0.293 0.224
3 LogPowSpec+PhaseDiff MSE+Matching ✓ 0.548 0.582 -0.028 -0.03 1.743 1.284 0.359 0.241

Table 4: Performance of vehicle counts for location 4 with pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

4 LogMelSpec+GCC-PHAT MSE ✓ 0.439 -0.013 -0.061 0.592 1.641 1.666 0.797 0.67
4 LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.585 0.467 0.114 0.562 1.622 0.801 0.501 0.41
4 LogPowSpec+PhaseDiff MSE ✓ 0.658 -0.189 0.251 -0.197 1.502 2.16 0.667 0.57
4 LogPowSpec+PhaseDiff MSE+Matching ✓ 0.049 -0.013 -0.203 0.07 2.406 1.951 0.739 0.626

Table 5: Performance of vehicle counts for location 5 with pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

5 LogMelSpec+GCC-PHAT MSE ✓ 0.428 0.498 0.068 0.156 0.771 0.619 0.402 0.187
5 LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.303 0.091 -0.063 0.59 0.827 0.886 0.374 0.234
5 LogPowSpec+PhaseDiff MSE ✓ 0.032 0.163 0.157 0.328 0.972 0.842 0.352 0.245
5 LogPowSpec+PhaseDiff MSE+Matching ✓ 0.498 0.283 -0.101 0.095 0.785 0.781 0.368 0.275

Table 6: Performance of vehicle counts for location 6 with pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

6 LogMelSpec+GCC-PHAT MSE ✓ 0.849 0.737 0.788 0.729 1.337 1.663 0.443 0.466
6 LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.845 0.726 0.808 0.744 1.394 1.697 0.452 0.458
6 LogPowSpec+PhaseDiff MSE ✓ 0.827 0.713 0.753 0.681 1.507 1.748 0.519 0.511
6 LogPowSpec+PhaseDiff MSE+Matching ✓ 0.854 0.738 0.821 0.761 1.288 1.607 0.433 0.451

Table 7: Performance of vehicle counts for location 6 without pre-training

Loc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

6 LogMelSpec+GCC-PHAT MSE — 0.824 0.709 0.78 0.714 1.526 1.777 0.514 0.491
6 LogMelSpec+GCC-PHAT MSE+Matching — 0.816 0.71 0.788 0.706 1.596 1.814 0.516 0.533
6 LogPowSpec+PhaseDiff MSE — 0.773 0.668 0.651 0.502 1.829 2.012 0.649 0.656
6 LogPowSpec+PhaseDiff MSE+Matching — 0.803 0.693 0.786 0.71 1.633 1.864 0.509 0.504


