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ABSTRACT

The ongoing advancement of deep learning approaches for acous-
tic scene classification (ASC) has enabled robust performance in
complex auditory environments. However, practical applications
demand models that are computationally efficient for real-time de-
cision making while remaining adaptive to diverse conditions. To
address these constraints, we propose three innovative architectures:
1) a scalable isotropic convolutional network, 2) a recursive colum-
nar architecture, and 3) a self-challenging representation method.
These architectures are designed for low computational complex-
ity and data-efficient ASC, leveraging advanced techniques such as
device impulse response enhancement and two-dimensional signal
embedding to enhance robustness against device mismatch. We val-
idate our approaches in the DCASE 2024 Task 1 challenge using
the TAU Urban Acoustic Scenes 2022 Mobile dataset, achieving
state-of-the-art performance and significantly improving domain
generalization capabilities. Our architectures offer computationally
lean, yet highly effective solutions for real-world ASC applications
across diverse auditory domains and recording devices.

Index Terms— Isotropic Architecture, Domain Adaptation,
Representation Learning

1. INTRODUCTION

Acoustic Scene Classification (ASC) plays a crucial role in our in-
teraction with environments, enabling a wide range of applications,
from urban planning and surveillance to multimedia retrieval and
assistive technologies. The field of machine learning often draws
inspiration from human cognitive abilities, particularly in synthe-
sizing experience and knowledge to predict complex patterns. ASC
represents a domain where such capabilities are crucial for inter-
preting diverse and dynamically changing environments.

The emphasis in the DCASE 2024 Challenge on low-
complexity, data-efficient ASC underscores the need for innovative
models that maintain high performance despite constraints like lim-
ited computational resources and minimal training data. These con-
straints are ubiquitous in real-world applications that require the de-
ployment of lightweight models on edge devices. Such models must
adapt rapidly to varied acoustic scenes, reflecting broader chal-
lenges in machine learning, where models must generalize across
unseen domains [1].

Traditional approaches to ASC often involve extensive data ma-
nipulation strategies such as domain randomization [2], adversarial
data enhancement [3], data generation [4], data preprocessing [5],

domain-invariant representation learning [6], feature disentangle-
ment [7], and various learning strategies including ensemble learn-
ing [8], meta-learning [9], and self-supervised learning [10]. De-
spite these efforts, achieving robust generalization remains chal-
lenging, as highlighted by recent studies advocating normalization
perturbation to improve domain generalization [11].

To address these challenges, we introduce three distinct archi-
tectures: 1) an isotropic convolutional network that adjusts dynam-
ically to computational resources, 2) a recursive columnar archi-
tecture that enhances information flow across the network, and 3)
a representation self-challenging (RSC) method that iteratively de-
emphasizes dominant features to activate less prominent but rele-
vant features. These models are enhanced by techniques such as
adaptive instance normalization, device impulse response augmen-
tation, and two-dimensional signal embedding, ensuring robustness
across various acoustic environments.

Key Contributions:

• Introduction of an innovative isotropic architecture for low-
complexity acoustic scene classification, enhancing adaptabil-
ity and computational efficiency.

• Presentation of the recursiv architecture, providing an alter-
native to traditional bottleneck designs by employing a two-
dimensional grid of isotropic convolutional blocks for effective
information preservation and distillation.

• Application of the RSC method, enhancing model learning by
focusing on less dominant but relevant features for classifica-
tion.

These contributions, validated through rigorous testing in the
DCASE 2024 Task 1 challenge, set new benchmarks in the ASC
field, demonstrating our commitment to advancing technology that
meets the demands of real-world applications in diverse acoustic
environments.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Audio Processing

All audio files are initially downsampled from a sampling rate of
44.1 kHz to 32 kHz. Feature extraction involves computing MEL-
spectrograms with 256 frequency bins, using a window length of
3072 samples, a hop length of 500 samples, and 4096 FFT points.
The audio processing steps adhere to the protocols established in the
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Figure 1: Isotropic architecture with the depth-point blocks.
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Figure 2: Data preprocessing steps.

baseline [12]1. Additionally, frequency masking is implemented to
randomly mask 48 frequency bins, resulting in a transformed shape
of 1x256x65.

2.2. Freq-Mixstyle

In this study, normalization is applied exclusively to frequency
bands instead of the traditional channel-wise approach. Subse-
quently, the frequency statistics from a random sample within the
batch are integrated. This technique adapts the Mixstyle Domain
Generalization method [4], which aims to improve generalization
between unseen domains. The Freq-MixStyle, according to the
baseline implementation, retains the default parameters with a prob-
ability of pfms = 0.4 to apply the Freq-MixStyle and a mixing
coefficient of α = 0.3.

2.3. Device Impulse Response Augmentation

To further improve domain generalization, device impulse response
(DIR) augmentation is employed. This process utilizes 66 freely
available vintage microphone impulse responses from MicIRP2.
DIR augmentation involves convolving a randomly selected im-
pulse response with the resampled audio file, which is then trun-
cated to the predefined sample size of 32k. This augmentation is ap-
plied with a probability of pdir = 0.6 and is specifically targeted at
the dominant device, identified as device A. By exposing the model
to a wide range of microphone characteristics through different im-
pulse responses, the system’s ability to generalize across various
domains is significantly enhanced. Inspired by DIR implementation
details provided by Morocutti et al. [13], we propose DIR domain

1https://github.com/CPJKU/dcase2024_task1_
baseline

2https://micirp.blogspot.com/?m=0

augmentation implementation3. The comprehensive pre-processing
pipeline for the audio snippets is illustrated in Figure 2.

3. NETWORK ARCHITECTURE

We present three distinct systems based on variations in an isotropic
architecture to address the challenges of the DCASE 2024 com-
petition. These systems include an isotropic architecture (Sys-
tem 1), the recursive multicolumn version (System 2) for en-
hanced feature extraction, and a Representation Self-Challenging
(RSC) model (System 3). Each system is designed to be sim-
ple and lightweight, operating on patch embedding within a scal-
able isotropic convolutional architecture throughout the network.
System 3 further processes the features outputted by the isotropic
architecture post-average pooling layer, excluding the classifica-
tion layer. The foundational model incorporates normalization and
augmentation techniques to achieve domain generalization through
data manipulation. The RSC versions build on this by adopting a
representation-learning approach, ensuring that the models produce
domain-invariant feature embeddings.

3.1. Isotropic architecture

The isotropic architecture is renowned for its flexibility to process
inputs of varying sizes and aspect ratios effectively while requiring
fewer labeled examples for training. As illustrated in Figure 1, this
architecture initially divides the input into multiple patches, effec-
tively reducing their internal resolution. Repeated depth-wise and
point-wise convolutions are then applied, which decouple channel
features from spatial features. This separation allows the architec-
ture to manage distant spatial patterns with linear complexity. The
efficiency of the isotropic architecture is dependent on several hy-
perparameters: patch size p, embedding dimension h, kernel size k,
and depth d:

• patch size: Governs the size of the patches, determining how
much of the original input’s features are preserved during pro-
cessing. A smaller p results in larger patches, retaining more
original features. We adjust this parameter to maximize the
allowed multiply-accumulate operations (MACs).

• embedding dimension: Dictates the number of filters that
the architecture will learn, where a higher number is typically
preferable.

• kernel size: Determines the size of the convolution filters, set
relative to the patch size to optimize MAC usage.

3https://github.com/hubtru/ASCDomain

https://github.com/CPJKU/dcase2024_task1_baseline
https://github.com/CPJKU/dcase2024_task1_baseline
https://micirp.blogspot.com/?m=0
https://github.com/hubtru/ASCDomain
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Figure 3: Recursive architecture with 3×3 array structure of depth-
point blocks (DP).

• depth: Specifies the number of convolutional blocks adjusted
to meet the maximum complexity allowed in the competition.

After experimenting with various settings to fine-tune the best set-
ting, we determined that a patch size of p = 5, embedding dimen-
sion of h = 64, kernel size of k = 3, and depth of d = 9 provided
the best performance, achieving high accuracy with 29,747,914
MACs and 47,946 parameters. This configuration ensures that the
network maintains consistent resolution and size throughout, as de-
tailed in Table 1.

Table 1: Details of isotropic network architecture.
Layer N Shape Params MACs

Input - 1× 256× 65 - -
Patch Embedding - 64× 51× 13 1.664 1.103.232
Depth-Point Block 9 64× 51× 13 5.056 3.182.656

AvgPool - 64 - -
Classification - 10 650 650

3.2. Recursiv

Recursiv extends the isotropic architecture by introducing an addi-
tional parameter, columns, which organizes the depth-point blocks
into a two-dimensional grid structure. This reconfiguration im-
proves connectivity between blocks, fostering a richer information
flow throughout the network, and preserving total information with-
out the typical loss or compression seen in conventional architec-
tures. The simplified structure of the recursiv network, shown in
Figure 3, features a 3× 3 array of depth-point blocks. To maintain
complexity requirements, we preserved the isotropic architecture’s
hyperparameters except for depth, adapting a 3 × 3 grid of depth-
point blocks. Consequently, recursiv architecture retains the same
number of depth-point blocks as the isotropic model, ensuring equal
MACs and parameter counts.

3.3. RSC

The Representation Self-Challenging (RSC) method enhances
learning by iteratively de-emphasizing dominant features, com-
pelling the network to focus on less prominent yet relevant features
for classification. This technique involves creating a mask that nul-
lifies features in the pth percentile of the top gradients, effectively

challenging the network to adapt. The effectiveness of RSC ex-
tends to batch processing, where it similarly disregards dominant
samples based on their cross-entropy loss values. We tested various
settings for RSC and found that dropping 5% of features and sam-
ples (dropf = 0.05 and dropb = 0.05) consistently yielded the
best results. The hyperparameters sensitivity studies of changing
dropf and dropb values are presented in our repository. The visual
representation of the RSC process is provided in Figure 4.

features

ba
tc
h

Figure 4: Intuition of RSC: Red marked rows are samples to be
dropped, blue marked columns are features to be dropped.

4. EMPIRICAL EVALUATION

4.1. Evaluation method

Our evaluation adheres strictly to the guidelines outlined in the
DCASE2024 Task 1 Challenge [14]4. We use the official eval-
uation package provided by the organizers5, evaluating our mod-
els on the TAU Urban Acoustic Scenes 2022 Mobile develop-
ment dataset [15]. To report model parameters and MACs (mil-
lion multiply-accumulate operations), we use the officially recom-
mended NeSsi tool6. Model tuning involves first adjusting the pa-
rameters without DIR augmentation and subsequently incorporating
them, aiming to optimize either the number of MACs or the param-
eters. This results in three distinct versions of each isotropic and
recursiv architecture. Details on MACs and parameters for each
model variant are provided in Table 2.

4.2. Training setup

All models are trained under similar conditions to ensure unifor-
mity across evaluations. The training parameters are as follows:
each model undergoes 150 epochs with a batch size of 256, and a
maximum learning rate of 0.005, using the AdamW optimizer. The
learning rate is managed by a cosine scheduler with an initial warm-
up of 2000 steps and a weight decay set at 0.0001. These training
settings are in line with those used by Baseline24, ensuring a fair
comparison of performance enhancements across all systems and
dataset splits. Model-specific hyperparameters are not varied be-
tween splits to maintain consistent training conditions throughout
the study.

4https://dcase.community/challenge2024/
5https://github.com/toni-heittola/dcase2024_

task1_submission_validator
6https://github.com/AlbertoAncilotto/NeSsi

https://dcase.community/challenge2024/
https://github.com/toni-heittola/dcase2024_task1_submission_validator
https://github.com/toni-heittola/dcase2024_task1_submission_validator
https://github.com/AlbertoAncilotto/NeSsi
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Table 2: Comprehensive model macro average accuracy including training sizes, parameter counts, MACs, and hyperparameters: p, d, c, and
k represent patch size, depth, columns, and kernel size, respectively. Freq-MixStyle and device impulse response (DIR) are applied as default.
For submitted systems, the augment with aug p = 6 is applied. Abbreviations HPO = Hyper Parameter Optimisation, N/A = Not Available.

Model 5% 10% 25% 50% 100% HPO Params % MACs % dtype p d × c k

Baseline24 42.40% 45.29% 50.29% 53.29% 56.99% - 61.148 72.06 29.419.156 97.57 16

Isotropic 44.22% 47.66% 55.51% 58.36% 60.97% - 47.946 74.92 29.747.914 99.16 16 5 9 3
Isotropicv2 42.28% 47.54% 53.11% 54.77% 58.18% × 86.666 67.71 21.270.026 70.90 8 8 4 × 4 4
Isotropicv3 42.39% 47.87% 51.52% 56.12% 58.17% - 119.690 93.51 29.463.050 98.21 8 8 6 × 4 4

Recursiv (3x3) 45.76% 50.46% 52.68% 55.41% 59.98% - 47.946 74.92 29.747.914 99.16 16 5 3 × 3 3
Recursivv2 (2x2) 42.65% 47.57% 52.51% 55.53% 58.84% × 86.666 67.71 21.270.026 70.90 8 8 2 × 2 4
Recursivv3 (2x3) 42.09% 46.78% 53.68% 55.74% N/A - 119.690 93.51 29.463.050 98.21 8 8 2 × 3 4

RSC (0.05,0.05) 44.75% 48.76% 54.86% 56.93% 58.85% - 47.946 74.92 29.747.914 99.16 16 5 9 3

4.3. Results

Our proposed methods significantly outperform Baseline24, a mod-
ification of the top model from the DCASE23 challenge. The
isotropic architecture achieves superior performance in three out of
five data splits (25%, 50%, and 100%), recording macro-average
accuracy of 55. 21%, 58. 36%, and 60. 97%, respectively. The
recursiv architecture excels in the 5% and 10% splits, achieving
macro-average accuracy of 45. 76% and 50. 46%. Remarkably,
both architectures require only 47,946 parameters, which is 74.92%
of the allowed limit. Detailed results from network component ab-
lation studies, sensitivity analyzes, and visualizations are available
in our repository7. The comprehensive performance data for all the
systems submitted, their variants, and Baseline24 across the five
data groups are presented in Table 2.

5. CONCLUSION

Our experimental findings substantiate that simple, lightweight
isotropic architectures leveraging patch embedding, normalization,
and audio data augmentation techniques deliver state-of-the-art re-
sults while maintaining low parameter complexity and a reduced
number of MACs. Future research will aim to enhance the efficacy
of adversarial and self-challenging representation techniques to fur-
ther foster domain-invariant feature embeddings.
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