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ABSTRACT

With the advancements in generative Al, text-to-audio systems have
become increasingly popular, transforming audio generation across
various domains such as music and speech. These systems en-
able the generation of high-quality audio from textual descrip-
tions, offering freedom and control when producing a variety of
audio. This technical report explores advancements in deep learn-
ing applied to sound generation specifically focusing on environ-
mental sound scene generation. Our approach leverages a Text-to-
Audio (TTA) system with Contrastive Language-Audio Pretraining
(CLAP), Conditional Latent Diffusion Models, a Variational Au-
toencoder (VAE) decoder, and a HiFi-GAN vocoder where LDM
learn continuous audio representations from CLAP embeddings, en-
hancing synthesis control through natural language prompts. Also
finetuned the diffusion model with the custom dataset created using
two audio dataset in order to improve generation quality.

Index Terms— Sound scene generation, Diffusion Model,
Custom dataset creation

1. INTRODUCTION

The recent advancements in deep learning have ushered in remark-
able breakthroughs in various domains, including sound generation
[IL], 121, [30, [4]. Starting from the foley sound generation, where
foley sound which is basically refers to sound effects created in or-
der to convey or enhance events in a narrative, like radio or film
for example: dog bark, moving car, rain sound etc is generated and
this foley sound generation forms the fundamental aspect of creat-
ing realistic, individual sounds that mimic specific actions and ob-
jects within a scene for example: a dog barking with the rain in
background. However, sound scene synthesis goes beyond foley by
combining various foley-generated sounds into unified audio land-
scapes that mimic imagined or real-world circumstances.

Therefore, sound scene generation, in particular, plays an im-
portant role in enriching the overall auditory experience in movies,
music, videos, and other multimedia content. The integration of
sound scene synthesis systems holds tremendous promise in simpli-
fying traditional sound generation processes, thereby reducing the
reliance on manual recording and mixing by human artists.

The Task 7 of DCASE 2024 Challenge [S] is about generating
a enviornmental sound given the textual description and this task
also expands the scope of foley sound synthesis to more general
case. The official baseline system for Task 7 [5] is a Text-to-Audio
(TTA) system, which utilizes a Contrastive Language-Audio Pre-
training (CLAP), Conditional Latent Diffusion Models, Variational
Auto Encoder (VAE) decoder and HiFi-GAN Vocoder.

This report presents a method, we submitted to Task 7 of
DCASE 2024 challenge [6]. The task involves synthesizing the
environmental sound given a textual description. Environmental
sounds synthesis system encompass any non-musical and unintel-
ligible vocal sounds and also adds controllability with natural lan-
guage in the form of text prompts. In previous TTA works, a po-
tential limitation for generation quality is the requirement of large-
scale high-quality audio-text data pairs, which are usually not read-
ily available, and where they are available, are of limited quality
and quantity which poses a challenging task, therfore to address
this challenge, we adopt the concept of AudioLDM that is built
on a latent space to learn continuous audio representations from
CLAP[6] embeddings and the pretrained CLAP models enable us
to train LDMs with audio embeddings while providing text embed-
dings as the condition during sampling. To achieve better result
we adopt the technique of fine-tuning the LDM using the custom
dataset which is created using the audios of the two audio datasets
namely ESC-50 dataset [[7] and Acoustic Scene dataset [8]. More
details about the generation process are mention in the section 3 and
4 of this report.

The following sections of this technical report are organized as
follows: Section 2 offers an insight into the proposed system. The
methodology utilized by the network is elaborated upon in Section
3. Section 4 outlines the experimental setup employed. Results
will be showcased in Section 5. Lastly, Section 6 encapsulates this
endeavor, offering a summary and drawing conclusions.

2. OVERVIEW OF THE PROPOSED SYSTEM

The proposed system mirrors the baseline architecture, specifically
AudioLDM, functioning as a Text-To-Audio (TTA) model. It lever-
ages a diffusion model to acquire continuous audio representations
through CLAP embeddings where CLAP model utilized is trained
on LAION-Audio-630K, AudioSet, Music and Speech dataset. Pre-
trained CLAP models facilitate the training of Latent Diffusion
Models (LDMs) with audio embeddings, simultaneously incorpo-
rating text embeddings as conditional inputs during the sampling
process. The architecture of AudioLDM revolves around four key
components: a U-Net based Latent diffusion Model, CLAP, a VAE
decoder, and a High Fidelity Generative adversarial network (Hifi-
GAN) vocoder. This system is then further improved with fine-
tuning on the custom dataset which is generated by mixing the two
audios from ESC-50 dataset and Acoustic Scene dataset. In-depth
discussions on these methodologies are presented in the subsequent
section. The overview of system is presented in Figure 1.
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Figure 1: Overview of the System.

3. METHODOLOGY

3.1. Contrastive Language - Audio Pretraining (CLAP)

CLAP [6] which is based on the concept of Contrastive Language -
Image Pretraining (CLIP) [9] is used as embedding encoder which
is generating the input embeddings. CLAP consist of audio encoder
faudio(.) and a text encoder fiex(.). An audio encoder convert audio
descriptions denoted as x into audio embeddings E* , and a text en-
coder, convert text description denoted as y into text embeddings
E’. Both encoders undergo training using symmetric cross-entropy
loss and this process yields a latent space characterized by consis-
tent dimensionality for both audio and text embeddings.

3.2. Conditional Latent Diffusion Models

The Latent Diffusion Model serves as a generator, trained on audio
embeddings derived from the trained CLAP audio encoder. Dur-
ing the sampling process, it utilizes text embedding as a conditional
input. Diffusion process is consist of two process: 1) Forward Pro-
cess: It transform the data distribution into the noise using a pre-
defined noise schedule. 2) Reverse Process: It gradually generates
the data sample from the complete noise according to the inference
schedule. Throughout the training phase, the model is optimized
with a re-weighted objective [10], denoted as L,(), formulated as
follows:

Ln(e) = Ezo,e,n”6 - Ee(z’ﬂyna Ez)“%

Using a Gaussian noise sample X,, the reverse transition probability
learned during training, and the text condition (y) from CLAP, the
model generates an outcome x during the sampling phase.

3.3. Decoder and Vocoder

During training Variational Autoencoder (VAE) is used to decode
the generated latent token into a mel-spectrogram and during the
training phase, the VAE learns to encode the mel-spectrograms, rep-
resented as X into a latent space vector z and subsequently recon-
structs the mel-spectrogram back to X. Hifi-GAN is utilized as the
vocoder which generate the sound & from the reconstructed mel-
spectrogram denoted as X

3.4. Fine-Tuning with Custom Dataset

First the custom dataset is created using the two audio dataset
namely, ESC-50 dataset and TAU Urban Acoustic Scenes 2020
Mobile development dataset. And the LDM is fine-tune by utiliz-
ing this custom dataset. In-depth discussions on this is presented in
the subsequent section.

4. EXPERIMENTS

4.1. Dataset Creation

Although the CLAP [6] is pretrained on large dataset like Au-
dioSet and UrbanSound8k, the LDM trained finetuned by us is
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trained on a custom dataset prepared by mixing sounds from ESC-
50 dataset [7] which is a labeled collection of 2000 environmental
audio recordings and TAU Urban Acoustic Scenes 2020 Mobile
development dataset [8] which consists of 10-seconds audio seg-
ments from 10 acoustic scenes. Few Samples were collected from
the TAU Urban Acoustic Scenes containing 10 different Acoustic
Scenes from 12 different cities. The custom dataset was created by
overlaying two audio samples, one from each of these above men-
tioned dataset, let say, x | be the audio from ESC-50 dataset and
x> be the audio from TAU Urban Acoustic Scenes 2020 Mobile de-
velopment dataset and the new audio ,say x got after overlapping is
formulated as:

T = Mz1 + A2

where A1 A2 are scaling factor which is equal to one , thereby cre-
ating a total of around 51k training sound samples. Experiments
were conducted to amplify the foreground sound overlaying with a
suppressed background audio to create audio samples resembling
an Audio Scene, for example ’snoring with the sound of park in
background’.

4.2. FAD Calculation

As per the given Evaluation metric, the Frechet Audio Distance
(FAD) is calcualted based on the embedding vectors from two
groups of audios calculated using features extracted from PANN
[L1] and CNN14 Wavegram-Logmel models. Here, the FAD score
represents the similarity between ground truth audios and the gen-
erated audios. The lower the FAD Score, the better is the quality of
generation.

4.3. Experimental Setup

The ESC50 [7]] dataset and TAU Urban Acoustic Scene [8]] dataset
used was sampled at 44kHz each and overlayed on each other. A
library called pydub was used in python environment to create the
mix of these sounds. Further the train and test json files were con-
structed as per the file format used in AudioCaps [12] dataset. The
dataset root file was constructed as part of metadata of our custom
generated audio dataset and placed in metadata folder. We have
used this dataset root json to train our LDM model.

4.4. System Information

The baseline LDM underwent training using four NVIDIA RTX™
A6000 GPU nodes, reaching a maximum step value of 52000
during the training process. Validation occurred after every five
epochs, during which FAD scores were computed using VGGish,
PANN, and MS-CLAP embeddings. The training, testing, valida-
tion and Variational Lower Bound (VLB) losses were monitored
and recorded using the Weight & Biases server, and their respective
curves were stored for analysis

5. RESULTS
The system’s performance on the validation set is shown in Table 1.

The FAD scores [13]] [[14] is utilized the evaluation metric which is
formulated as follow:

1
F(Nr, Ng) = [|por — Ng”% + (S, + 3 —2(5,3g)2)
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where Ny (pr, Xr) and Ny (ug, Xg4) are, from the generated sam-
ples and the evaluation set, the multivariate Gaussians distribution
of the VGGish embeddings, respectively.

Table 1: Results of AudioLDM models on development and exter-
nal datasets

Model FAD (dev dataset) FAD (ext dataset)
AudioLDM (Baseline) 61.2761 61.2761
AudioLDM - finetuned 28.1756 31.5788

6. CONCLUSION

The solution that we presented for DCASE 2024 challenge task 7
is essentially described in this technical report. Our system basi-
cally utilizes state-of-the-art diffusion-based models and incorpo-
rates fine-tuning technique to get better results. Comparing with the
baseline system our fine-tuned system significantly leverages the
audio generation, achieving a low FAD score of 28.1756 on devel-
opment dataset.
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