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ABSTRACT

This technical report outlines our approach to Task 3A of the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
2024, focusing on Sound Event Localization and Detection (SELD).
SELD provides valuable insights by estimating sound event local-
ization and detection, aiding in various machine cognition tasks
such as environmental inference, navigation, and other sound
localization-related applications.

This year’s challenge evaluates models using either audio-only
(Track A) or audiovisual (Track B) inputs on annotated recordings
of real sound scenes. A notable change this year is the introduction
of distance estimation, with evaluation metrics adjusted accordingly
for a comprehensive assessment.

Our submission is for Task A of the Challenge, which focuses
on the audio-only track. Our approach utilizes log-mel spectro-
grams, intensity vectors, and employs multiple data augmentations.
We proposed an EINV2-based [1] network architecture, achieving
improved results: an F-score of 40.2%, Angular Error (DOA) of
17.7◦, and Relative Distance Error (RDE) of 0.32 on the test set of
the Development Dataset [2, 3].

Index Terms— log-mel spectrogram, sound event detection
and localization, distance estimation, attention mechanism

1. INTRODUCTION

The goal of the Sound Event Localization and Detection (SELD)
task is to detect sound events (SED) while estimating their corre-
sponding direction of arrival (DOA). SELD systems have shown
significant potential in diverse applications such as machine listen-
ing, smart homes, navigation, and wildlife sound detection. The
annual DCASE challenge has drawn extensive attention from re-
searchers and has facilitated notable advancements in the field of
SELD.

In the current field, research aimed at solving the SELD prob-
lem can be mainly classified into two main approaches. The first
category includes a model architecture featuring a unified input and
output system. In the DCASE 2020 challenge, the activity-coupled
Cartesian DOA (ACCDOA) representation was introduced in [4].
This representation maps sound event activity to the length of a
corresponding Cartesian DOA vector, effectively merging the SED
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and DOA tasks into a single regression task within Cartesian co-
ordinates. However, the ACCDOA representation has limitations
in dealing with simultaneous similar events. To overcome this, the
ACCDOA representation was enhanced to multi-ACCDOA by in-
corporating Auxiliary Duplicating Permutation Invariant Training
(ADPIT) [5] as discussed in localizing and detecting overlapping
sounds from the same class [6]. The multi-ACCDOA output has
been used as the standard in the Baseline systems for the DCASE
2023, and 2024 challenges.

The second approach is a two-branch structure model. In 2019,
a two-step strategy was proposed in the proposed methods like [7],
Cao et al.’s system [8] uses a logmel magnitude spectrogram with
M = 96 mel bins and the generalized cross-correlation phase trans-
form (GCC-PHAT) [9]. Since the logmel spectrum lacks phase in-
formation important for DOA estimation, the author [8] used GCC-
PHAT as additional acoustic features. This method employs a two-
stage training approach: initially training only the SED branch of
the network, followed by transferring the parameters of the Convo-
lutional Neural Network (CNN) blocks responsible for computing
high-level features to the DOA branch for separate training. During
DOA branch training, SED ground truth labels mask the estimated
DOA labels. During inference, both SED and DOA are predicted
using the independently trained branches, with DOA labels adjusted
by the predicted SED labels. This strategy streamlines training
while utilizing SED features for DOA estimation. Additionally, the
CNN architecture diverges from the Baseline system, notably em-
ploying a 2x2 pooling layer that compresses features along the time
axis, followed by up-sampling at the conclusion. Furthermore, an
event-independent network version 2 (EINV2) was introduced in
[1], which incorporates soft parameter sharing and multi-head self-
attention (MHSA) to decode the SELD outputs effectively.

Both approaches demonstrate notable performance improve-
ments in the SELD task. Hence, we aim to leverage the EINV2-
based design with multi-ACCDOA output to capitalize on the
strengths of both systems.

To fully leverage the time-frequency features of audio data, we
devised a method integrating diverse techniques for data augmen-
tation and feature extraction. Our approach involved designing and
training a novel network within the EINV2 framework. This in-
cluded applying various time-frequency domain augmentation tech-
niques to enrich training data diversity and enhance model robust-
ness. Additionally, we incorporated a multi-scale channel attention
mechanism to effectively capture inter-channel correlation informa-
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tion and employed multi-phase training to optimize model perfor-
mance through domain-specific training strategies.

In summary, the main contributions of our proposed method
are:

We designed a network architecture based on the EINV2 frame-
work specifically designed for the SELD task.

Our approach includes a split-phase training framework and
employs diverse data augmentation techniques such as random
cutout [10], noise injection, SpecAugment [11], and Audio Channel
Swapping (ACS) [12] to enhance model generalization and perfor-
mance.

We incorporated a multi-scale channel attention mechanism
to capture inter-channel correlations effectively, enhancing the
model’s ability to handle overlapping sound events across different
classes, leveraging Conformer [13] integration.

Experimental results on the Development Dataset demonstrate
significant improvements compared to the Baseline system, demon-
strating the effectiveness of our approach in tackling the challenges
of SELD.

2. PROPOSED METHODOLOGY

2.1. Features

In our approach, we use audio files in Ambisonic format of the De-
velopment Dataset 2024 [3]. The dataset comprises 7 hours and 22
minutes of real recordings, divided into 90 training clips and 78 test-
ing clips. It includes 13 sound event classes: female speech, male
speech, clapping, telephone, laughter, domestic sounds, footsteps,
door, music, musical instrument, water tap, bell, and knock. The
scenarios involve up to three overlapping sound sources. We ex-
tracted two types of features from the audio files: 4-channel spectro-
grams were accumulated into 64 mel energies, and 3-channel sound
intensity vectors, as detailed in [14]. These features were used as
inputs for our proposed network. The input feature matrix, with di-
mensions C × T × F, where C denotes channels, T represents frame
sequence length, and F indicates feature count, was fed into the
model. The audio data was sampling at 24 kHz.

2.2. Data Augmentation

To improve the model’s performance and generalization, we apply
data augmentation in both time and frequency domains. Techniques
include random cutout and noise injection. Moreover, spectrogram
augmentation is implemented using SpecAugment [11], a widely
adopted method from related experiments in the domain.

In this year’s challenge, the provided dataset, Sony-TAu Realis-
tic Spatial Soundscapes 2023 (STARSS23), has expanded since its
inception. However, enhancing model robustness remains a chal-
lenge. To address this, we augmented the dataset obtained by gen-
erating synthetic data using SpatialScaper [15] and applied the ACS
technique [12] in the final stage of training, thereby increasing the
dataset size eight-fold. Additionally, we continue to employ tech-
niques such as random cutout, time-frequency masking, and fre-
quency shifting to improve model generalization in both stages of
the training. Finally, we introduced random mix to blend original
and augmented data with specified weights, creating a new training
dataset.

2.3. Architecture

We propose a ResNet-Conformer model based on the EINV-2 [1]
architecture and the EINV2-based with MS-CAM [16] blocks from
Xue et al. [17]. Our approach enhances the Baseline model
with several modifications: integrating ResNet blocks with rescaled
residual connections for improved performance, incorporating a
multi-scale channel attention mechanism to fuse local and global
features across channels, and replacing GRU and MHSA with Con-
formers [13] to better capture temporal features. Furthermore, we
introduce max pooling to mitigate overfitting after each shared
weighted layer. Leveraging the EINV2 framework’s success in
SELD tasks, our ResNet-Conformer integrates ResNet blocks with
the EINV2 two-branch design featuring shared weights. Unlike the
EINV2’s multi-branch output, our model adopts a multi-ACCDOA
format. See Figure 1 for an illustration of our network structure.

2.4. Training

We trained the model using back-propagation and the Adam opti-
mizer with a batch size of 512. The output is in multi-ACCDOA
format with the MSE-ADPIT loss function as described in [18].

The modification of the single-task multi-ACCDOA approach
introduced in [6] expands the original 3-element DOA vector to
include an additional distance estimate. For N tracks, C classes,
and T frames, the output is defined as ynct = [anctRnct, Dnct],
where n, c, and t represent the output track number, target class,
and time frame, respectively. In this context, anct ∈ {0, 1} indi-
cates detection activity, Rnct ∈ ⟨−1, 1⟩ refers to the DOA vectors,
and Dnct ∈ ⟨0,∞) denotes distance values. The dimensions are
specified as follows: a,D ∈ RN×C×T , R ∈ R3×N×C×T , and
∥Rnct∥ = 1. As modeled by Krause et al. [18], up to N = 3 is
considered, resulting in number of output neurons = 156. The out-
put is linear to cover both DOA and distance ranges. The final loss
function is defined as follows [18]:

LADPIT =
1

CT

C∑
c

T∑
t

min
α∈Perm[ct]

lACCDOA
α,ct (1)

lACCDOA
α,ct =

1

N

N∑
n

L(yα,nct, ŷα,nct) (2)

where L(·) is a chosen loss function, α is one possible track
permutation, and Perm[ct] is the set of all possible permutations.

A learning rate scheduler and early stopping were used during
training to prevent overfitting. The model was trained in parallel
mode using three NVIDIA GeForce RTX 3090 GPUs. Additionally,
one of our submissions employed a full training duration of 120
epochs.

We also adopt a multi-phase training strategy. Initially, the
model’s weights are initialized with synthetic data [19]. Subse-
quently, we fine-tune the model using the Development Dataset
2024, incorporating ACS and the augmented data to generate more
data. This combined augmentation and training strategy substan-
tially enhances both the robustness and performance of the model.

2.5. Evaluation metrics

To evaluate our models, we apply SELD metrics defined in the
DCASE Challenge 2024 Task 3, including F-score for SED, Angu-
lar Error, and Relative Distance Error. Detection metrics consider
spatial proximity, with F-score (F20°) requiring correct predictions
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Figure 1: Proposed Network on effective training of the SELD task

only if the class matches, Angular Error is ≤ 20◦, and Relative
Distance Error is ≤ 1.0. The Relative Distance Error measures the
difference between estimated and reference distances normalized by
the reference distance itself. Evaluation is conducted in one-second
segments using micro-averaging, and source matching employs the
Hungarian algorithm based on angular distance [20].

3. EXPERIMENTAL RESULTS

Table 1 presents our results on the Development Dataset 2024. The
network was trained using a multi-phase approach involving syn-
thetic, real, and augmented data.

Model 1, trained without the multi-phase training framework or
data augmentation, achieved an F-score of 23.1%, DOA of 25.3◦,
and RDE of 0.33.

For Model 2, we initialized weights with synthetic data and sub-
sequently trained on the real dataset with augmented data, excluding
ACS. Model 2 achieved an F-score of 33.0%, DOA of 20.7◦, and
RDE of 0.32.

The Proposed Model utilized weight initialization from syn-
thetic data and was trained on real data with ACS and random mix
augmentations to significantly enhance and diversify training data.
It achieved an F-score of 40.2%, DOA of 17.5◦, and RDE of 0.32.
This model was used for inference and submitted for the DCASE
2024 Task 3A challenge.

Model F20◦ DOACD RDECD

Baseline 13.1% 36.90◦ 0.33
Model 1 23.1% 25.3◦ 0.33
Model 2 33.0% 20.7◦ 0.32
Proposed Model 40.2% 17.5◦ 0.32

Table 1: Reported metrics for the test on the Development Dataset
2024

4. CONCLUSION AND FUTURE WORK

In this experiment, we implemented a ResNet-Conformer two-
branch network with multi-phase training, achieving improved per-
formance compared to the Baseline system in terms of F-score and
Angular Error.

However, our results indicate that the Relative Distance Error,
a new evaluation metric introduced for this year’s challenge task,
did not show significant improvement over the Baseline. Future
research efforts will focus on enhancing performance on this metric.
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