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ABSTRACT

This report contains a description of the FKIE-VUB system submit-
ted to task 2 “First-Shot Unsupervised Anomalous Sound Detection
for Machine Condition Monitoring” of the DCASE2024 Challenge.
The submitted system is an adaptation of a previously proposed sys-
tem based on an embedding model trained with an auxiliary classi-
fication task, which is imposed by self-supervised learning and pro-
vided meta information. The main modifications of the presented
system are to replace the sub-cluster AdaCos loss with the AdaProj
loss and to use balanced sample weights when training the embed-
ding model. In experimental evaluations, it is shown that both mod-
ifications improve the resulting performance and that the proposed
system significantly outperforms both baseline systems of the chal-
lenge as well as the model it is based on.

Index Terms— anomalous sound detection, machine listening,
anomaly detection, representation learning, domain generalization

1. INTRODUCTION

Task 2 of the DCASE2024 Challenge [1] is called “First-Shot Unsu-
pervised Anomalous Sound Detection for Machine Condition Mon-
itoring”. This year, submitted systems not only had to be trained
using only normal data and to be robust to possible acoustic domain
shifts, which may for example be caused by changing machine pa-
rameters or the background noise, but also had to be capable to
effectively handle completely novel machine types without having
access to recordings of similar machines and not always having ac-
cess to machine parameter settings. Such constraints are vital for
practical industrial applications where data annotations may not al-
ways be available and domain shifts frequently occur. Needing to
re-design the system for different machine types, re-train the entire
system when changing machine settings or to always label exten-
sive amounts of data for every machine type is costly and highly
impractical.

The organizers provided two baseline systems based on
machine-type specific autoencoders with different ways to calcu-
late anomaly scores: 1) using the mean squared error (MSE) and 2)
using the Mahalanobis distance (MAHALA) [2]. The dataset of the
challenge consists of a development set and an evaluation set with
mutually exclusive machine types, which both contain a training
split consisting of only normal data and a test split consisting of nor-
mal and anomalous data from ToyAdmos2 [3] and MIMII-DG [4].
Each training split contains 990 samples belonging to the source
domain and 10 samples belonging to the target domain. The test

splits contain about the same number of samples for both domains.
For approximately 50% of the machine types additional meta in-
formation denoting machine parameter settings or models or noise
conditions are available for the recordings contained in the training
split. For each recording, it is known which machine type is con-
tained in the recording. More details about the design and rules of
the task as well as the dataset can be found in [1].

State-of-the-art anomalous sound detection (ASD) systems for
acoustic machine condition monitoring usually utilize an embed-
ding model to project the data into a relatively low-dimensional vec-
tor space and measure distances to or estimate distributions of nor-
mal data to determine whether a test sample is normal or anomalous.
The main difficulty of designing such an ASD system is choos-
ing how to train the embedding model. Here, many of the best-
performing systems utilize auxiliary classification tasks based on
classes defined by provided meta information [5] or self-supervised
learning (SSL) [6]. These models have been shown to outperform
one-class models such as autoencoders because utilizing meta in-
formation enables the system to closely monitor the sounds of the
target machine and ignore the background noise [7].

The main contribution of this work is to present a conceptu-
ally simple state-of-the-art ASD system1 for the DCASE2024 Chal-
lenge. Apart from the difficulties imposed by the rules of the chal-
lenge task and the design of the dataset, we included the following
difficulties to simplify the system itself and make it more useful for
practical applications:

• only a single embedding model is used for all machine types
and domains

• no samples belonging to the target domain are used for training
the embedding model to really capture the difficulty of domain
generalization

• no external datasets are used to train the system

In experimental evaluations conducted on the development set of
the DCASE2024 ASDdataset, it will be shown that the proposed
system significantly outperforms both baseline systems of the chal-
lenge.

2. SYSTEM DESCRIPTION

The system described in this report is largely based on the ASD sys-
tem presented in [6]. As this system yields state-of-the-art perfor-

1An open-source implementation of the proposed system is available at:
https://github.com/wilkinghoff/dcase2024_task2

https://github.com/wilkinghoff/dcase2024_task2
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Figure 1: Overall architecture of the ASD system. Representation size in each step is given in brackets. This figure is adapted from [6] and
originally adapted from [8].

mance on the DCASE2023 ASD dataset [9], it is a viable choice as a
starting point and will also serve as an additional baseline system in
the experimental evaluations of this report. The overall architecture
of the proposed system can be found in Figure 1 and can be divided
into the three main processing blocks 1) a frontend, 2) an embed-
ding model and 3) a backend. In the following, these three blocks
will be described in detail with an emphasis on all modifications of
the ASD system it is based on [6].

2.1. Frontend

The frontend consists of pre-processing the data and extracting two
different feature representations for the embedding model. First of
all, waveforms that are shorter than 192, 000 samples, i.e. shorter
than 12 s are padded with zeros before and after the original sig-
nal content. This is the longest duration of any of the recordings
contained in the dataset. Then, two different input features are ex-
tracted. As a first input feature, a magnitude spectrogram with a
window size of 1024 and a hop size of 512 is used. For each mag-
nitude spectrogram, the temporal mean, calculated by using only the
frames belonging to the non-padded signal values, is subtracted to
remove constant frequency information. As a second input feature,
the magnitude of the spectrum belonging to the entire waveform is
used. In contrast to the system presented in [6], only the frequencies
up to 8 kHz, which is equal to half of the sampling rate, are kept.
To prevent overfitting of the embedding model, mixup [10] with a
mixing coefficient drawn from a uniform distribution is randomly
applied with a probability of 0.5 to the waveforms.

2.2. Embedding model

The embedding model consists of two different convolutional neural
networks (CNNs) as sub-networks, one for each of the two feature
branches, and has the same general architecture as the embedding
model used in [6]. The sub-network for the spectrogram branch
has a modified ResNet architecture [11] with four residual blocks,
a max-pooling operation over the time dimension in combination
with a flattening operation and a linear layer. The sub-network for
the spectrum branch consists of three one-dimensional convolutions
with large strides are applied to downsample the input followed by
a flattening operation and and five dense layers. In both networks,
ReLU is chosen as an activation function and batch normalization
[12] is applied. To obtain a single embedding for each input sample,

the embedding of both sub-networks are concatenated. More details
about the network architecture can be found in [8].

2.3. Training strategy

To train the neural network two equally weighted loss terms captur-
ing two different auxiliary classification tasks are used as proposed
in [6], i.e. for sample x and class label y

Ltotal(x, y) = Lmeta(x, y) + Lssl(xssl, yssl)

with xssl and yssl being defined by an SSL approach as described
below and Lmeta and Lssl denoting categorical crossentropies. For
the first task Lmeta, the classes are defined by all possible combi-
nations of machine types and specific values for provided attribute
information. This is a commonly used definition of an auxiliary
classification task for ASD. As an additional SSL task Lssl, feature
exchange (FeatEx) is applied with a probability of 50%. Here, the
embeddings of both sub-networks are randomly exchanged between
two different samples of a batch and the network needs to predict
whether the two embeddings belong to the same sample or not. This
is similar to the training objective of the look, listen and learn em-
beddings [13, 14, 15] where there are two sub-networks for an au-
dio clip and a video frame. When applying FeatEx, the network
also needs to predict the exact classes the two embeddings of the
sub-networks belong to. More details about this FeatEx approach
can be found in [6].

The angular margin loss AdaProj [16] with an adaptive scale
parameter as defined for the AdaCos loss [17] and no margin pa-
rameter is used as a loss function for each of the two loss terms.
This loss function projects the embeddings to class-specific sub-
spaces instead to single points (centers) [18, 17] or one of multiple
points [19]. This leads to better ASD performance since the so-
lution space is much larger as an entire vector space itself, which
results in learning more sophisticated distributions for each class
and helps to detect anomalous samples in the joint embedding space
[16]. The entire network is trained for 10 epochs using Adam [20]
with a batch size of 32.

When considering different values for the different attribute in-
formation as different classes, one can think of the attribute infor-
mation as introducing additional sub-classes for each machine type.
This has also been explicitly captured with an hierarchical learning
approach for the classes [21] but only led to very marginal gains
in performance. The same is true for few-shot sound event detec-
tion (SED) [22]. Still, the different attribute values lead to highly
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imbalanced (sub-)classes. Even though it is only an auxiliary task
not directly related to the ASD problem, it may affect the result-
ing ASD performance. To balance these highly imbalanced classes,
sample weights were applied to the gradients during training . This
was done by applying the following three steps: First, for each sam-
ple x its weight w(x) ∈ N0 was set to

w(x) := |{y ∈ Yclass : class(x) ̸= y}|

where Yclass denotes the set of all classes and class(x) ∈ Yclass the
class of sample x. Thus, samples with attribute information for
which fewer samples exist have a higher weight when adapting the
training. In a second step, for each machine type the labels were
normalized by setting

wnorm(x) :=
w(x)∑

x′∈{x′:type(x′)=type(x)} w(x′)
∈ [0, 1]

where type(x) denotes the machine type of sample x. This ensures,
that each machine type has equal weight during training and avoids
creating another imbalance. Last, the sample weights are re-scaled
to be able to use the same number of epochs and the same learn-
ing rate as without using the sample weights. This is achieved by
dividing by the mean value of the weights.

In addition to using the AdaProj loss instead of the sub-cluster
AdaCos [19] and using sample weights to balance the classes, the
following two modifications of the system described in [6] are uti-
lized when training the embedding model. First, the SSL technique
statistics exchange (StatEx) [23] is not longer used because no sig-
nificant differences in performance could be observed. Removing
StatEx simplifies the system and reduces the number of classes and
thus also the number of parameters. This is also consistent with
the findings in [6] where it was shown that sometimes StatEx im-
proved the performance but sometimes the performance slightly de-
graded. The second modification is to use randomly initialized and
non-trainable basis vectors (formerly centers) for the SSL loss. Us-
ing non-trainable centers prevents learning trivial solutions for one-
class losses [24] and has also been shown to improve the ASD per-
formance when using angular margin losses [8]. For the other an-
gular margin losses such as the AdaCos loss [17] or the sub-cluster
AdaCos loss [19] this would not be possible because the intersection
of (pairwise different) points is the empty set and thus no optimal
solution for both tasks would exist. But for the AdaProj loss the in-
tersection of two linear sub-spaces, each containing the optimal so-
lutions for one of the subtasks, is another (lower-dimensional) sub-
space and in particular non-empty. Hence, when using the AdaProj
loss there are still optimal solutions for both tasks when using ran-
dom sub-spaces that are not adapted during training. Apart from a
slightly better ASD performance in general as shown in [16], this is
another advantage of using the AdaProj loss.

2.4. Backend

The goal of the backend is to calculate anomaly scores such that
higher scores indicate anomalous data. Since the machine type is
provided for each test sample, this is done for each machine type
(and section) independently. To calculate the anomaly scores, first
k-means with k = 32 is applied to the 990 normal training samples
belonging to the source domain. Then, the minimum of all cosine
distances to these means as well as all ten samples belonging to the
target domain is used as an anomaly score. This backend is essen-
tially the same as the one of the baseline system [6] and was origi-

nally proposed in [8]. The only difference is that k = 32 instead of
k = 16 is used when applying k-means.

Decision thresholds for semi-supervised anomaly detection are
estimated by separating the most extreme values of the anomaly
scores belonging to the normal training samples from the less ex-
treme scores and hoping that the same value is a suitable choice for
separating the anomaly scores of normal and anomalous samples
[25]. To this end, we assume a uniform distribution of the anomaly
scores and use the 90th percentile as a decision threshold.

2.5. Submissions

Three different versions of the proposed system were submitted to
the challenge to investigate the impact of designing the training
dataset and the impact of the sample weights on the performance.
All three systems are ensembles, each consisting of ten indepen-
dently trained embedding models with the exact same architectural
design as described above. The anomaly scores of the ensembled
systems are combined by taking the mean of the anomaly scores.
The system for submission 1 was trained using the training split
of the development and the evaluation dataset while using sample
weights for balancing the classes. The system for submission 2 was
trained using only the training split of the development set while
still using sample weights. The system for submission 3 was also
trained using only the training split of the development set but with-
out using sample weights.

3. EXPERIMENTAL RESULTS

The experimental results obtained with the three submitted systems
as well as the two baseline systems of the challenge [2] and our own
baseline system [6] are contained in Table 1. The following obser-
vations can be made. In terms of overall performance, our own
baseline system as well as all submitted systems yield significantly
better results than the two baseline systems of the challenge. This
is especially true for the target domain, for which both the MSE
and MAHALA baseline yield results that are close or even slightly
worse than random guessing. Noticeable exceptions of this gen-
eral trend are the machine types “fan” and “ToyCar”. Here, the
two baseline systems of the challenge yield much better perfor-
mance than the submitted systems on the source domain but very
bad performance (much less than random guessing, i.e. 50% AUC)
on the source domain showing that the baseline systems overfit to
the source domain and do not generalize well to unseen domains.

When comparing the performance of the submitted systems to
our own baseline system, it can be seen that the AUC obtained on
the source domain significantly improves while the performance on
the target domain is very similar. This shows that the proposed
modifications not only simplify the architecture of the ASD sys-
ten but also improve the performance. Another observation to be
made is that also using the additional training dataset belonging to
completely different machine types than the training split of the de-
velopment dataset, only improves the performance for the machine
type “fan” while degrading the performance for all other machine
types. Overall, the performance significantly degrades when us-
ing the additional training dataset indicating that only using training
data belonging to the machine types that are evaluated seems to be
a better choice. Last but not least, one can see that using sample
weights for balancing the classes improves the performance when
comparing the performance obtained with submission 2 to the one
obtained with submission 3.



Detection and Classification of Acoustic Scenes and Events 2024 Challenge

Table 1: AUCs and pAUCs per machine type obtained on the development set of the DCASE2024 ASD dataset. The last row contains the
harmonic mean taken over all machine types. Highest AUCs and pAUCs in each row are highlighted in bold letters.

dataset split baseline systems submitted systems
machine type domain metric MSE [2] MAHALA [2] own baseline [6] submission 1 submission 2 submission 3

ToyCar source AUC 70.1% 74.5%74.5%74.5% 51.5% 52.7% 60.0% 58.0%
ToyCar target AUC 46.9% 43.4% 47.8% 48.2% 55.4% 55.9%55.9%55.9%
ToyCar mixed pAUC 52.5%52.5%52.5% 49.2% 48.4% 49.4% 50.0% 51.1%

ToyTrain source AUC 57.9% 56.0% 65.4% 68.3% 71.1%71.1%71.1% 67.7%
ToyTrain target AUC 57.0% 42.5% 67.8%67.8%67.8% 53.0% 56.9% 58.9%
ToyTrain mixed pAUC 48.6% 48.1% 54.2% 53.5% 54.1% 55.4%55.4%55.4%

bearing source AUC 65.9% 65.2% 70.0% 70.0% 75.6%75.6%75.6% 75.1%
bearing target AUC 55.8% 55.3% 68.9% 67.2% 73.4%73.4%73.4% 72.0%
bearing mixed pAUC 50.4% 51.4% 60.8%60.8%60.8% 58.8% 60.3% 60.5%

fan source AUC 80.2% 87.1%87.1%87.1% 61.8% 70.3% 69.1% 70.1%
fan target AUC 36.2% 46.0% 60.4% 79.9%79.9%79.9% 65.4% 64.2%
fan mixed pAUC 59.0% 59.3% 58.6% 59.5%59.5%59.5% 54.9% 53.3%

gearbox source AUC 60.3% 71.9% 69.6% 70.4% 74.2%74.2%74.2% 68.7%
gearbox target AUC 60.7% 70.8% 73.8% 74.7% 75.5%75.5%75.5% 75.4%
gearbox mixed pAUC 53.2% 54.3% 57.2% 54.8% 58.1%58.1%58.1% 57.3%

slide rail source AUC 70.3% 84.0% 94.4%94.4%94.4% 92.3% 90.1% 90.9%
slide rail target AUC 48.8% 73.3% 82.6% 80.2% 85.2%85.2%85.2% 83.0%
slide rail mixed pAUC 56.4% 54.7% 67.3% 65.6% 68.5%68.5%68.5% 65.8%

valve source AUC 55.4% 56.3% 93.7% 93.4% 95.6%95.6%95.6% 95.6%95.6%95.6%
valve target AUC 50.7% 51.4% 65.9%65.9%65.9% 61.2% 55.9% 54.7%
valve mixed pAUC 51.2% 51.1% 65.9% 68.3% 69.3%69.3%69.3% 67.7%

all source AUC 64.8% 68.8% 69.4% 71.5% 74.9%74.9%74.9% 73.2%
all target AUC 49.6% 52.4% 65.1% 64.1% 65.2%65.2%65.2% 64.9%
all mixed pAUC 52.8% 52.4% 58.3% 57.9% 58.6%58.6%58.6% 58.2%

4. CONCLUSIONS

In this report, the FKIE-VUB system submitted to task 2 of the
DCASE2024 Challenge was described. The system is a simplified
version of a previously developed ASD system, which uses an em-
bedding model trained with an auxiliary classification task imposed
by meta information and SSL. Furthermore, two additional modifi-
cations were proposed to improve the resulting ASD performance:
1) using AdaProj as a loss function and 2) using sample weights
to balance the classes during training. As the main result, the pre-
sented system significantly outperforms both baseline systems of
the challenge on the DCASE2024 ASD dataset as well as the ASD
system it is based on.
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