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ABSTRACT
Unsupervised pretrained models have been used successfully
in a wide range of scenarios. This report presents our work
for DCASE 2024 Task 2: First-shot unsupervised anomalous
sound detection for machine condition monitoring. To solve
this problem, a three-subnetworks is designed specifically for
outlier exposure. The sample information is fully exploited
to extract its embedding using classification networks as an
auxiliary task, and then anomaly scores are calculated using
clustering. Several pre-trained large models are fine-tuned
with datasets from the DCASE 2024 challenge Task2 to fur-
ther improve the performance. The ensemble of the above
methods achieves an official score of 65.56% on the devel-
opment dataset, being significantly superior to the baseline
model’s performance.

Index Terms— Anomalous sound detection, embedding
extraction, pre-trained model

1. INTRODUCTION

In recent years, anomalous sound detection has become one
of the key tasks in the Detection and Classification of Acous-
tic Scenes and Events (DCASE) challenge [1]. Since its
inception in 2020, the task has progressively incorporated
requirements relative to real-world scenarios. Firstly, mod-
els are trained exclusively using normal signals [2]. Sec-
ondly, anomalies must be detected despite the presence of
domain shifts between the training and testing datasets [3].
Thirdly, the machine types in the development dataset are
different from those in the evaluation dataset, preventing the
fine-tuning of networks for specific target types. In addition,
for each type of machine, only a single instance is provided
[4]. Finally, the first-shot task is introduced this year where
the attribute information of the machine acoustic signals is
no longer fully available [5], [6], [7], [8].

In response to the challenges in anomalous sound detec-
tion, two primary methods have emerged. The first method is
based on autoencoder (AE) models, known as inlier model-
ing (IM). This approach uses the reconstruction error of the
AE model to identify anomalies. However, AE models of-
ten struggle to reconstruct anomalous signals effectively and
face difficulties in handling signals with domain shifts. Due
to the complex acoustic background, AE-based methods of-
ten fail to capture the subtle features of signal anomalies [9].
Consequently, a popular approach based on discriminative
models, known as outlier exposure (OE), has been widely
used recently. This method utilizes a classification network
as an auxiliary task to extract signal embedding vectors and
further use clustering or other techniques to detect anoma-
lies. By applying deep networks to capture detailed signal
information, this approach has achieved outstanding results
in recent years [10], [11], [12].

Based on the problems mentioned above, this paper pro-
poses an anomalous sound detection method that incorpo-
rates three sub-networks and a pre-trained model. Our ap-
proach is designed to extract and process date from the time
domain, frequency domain, and time-frequency domain. The
network architecture is redesigned based on the work of [13].
Previous studies have shown that fully utilizing information
such as device ID, speed microphone position, and operat-
ing environment can significantly enhance the extraction of
signal representations [14]. After a thorough evaluation of
Gaussian Mixture Models (GMM) and K-Means, we decided
on K-Means as the anomaly score calculator finally. Con-
sidering the advancements of pre-trained models, we further
trained a pre-trained model and finally integrated its results
with the outputs of the three sub-networks.

The rest of the paper is organized as follows. Section 2
describes the three sub-networks. Section 3 covers the pre-
trained models. Section 4 presents the ensemble strategy and
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the results. Finally, Section 5 concludes the work.

2. THREE-SUBNETWORKS

In this section, we propose a detection method using a multi-
channel classification network called three sub-networks.
Acoustic samples are classified according to their attributes
and categories, and a network is trained for classifica-
tion task. The embedding vectors are then extracted as
low-dimensional representations of signals to calculate the
anomaly score. The details of the network are as follows.

During the front-end processing, the length of all signals
is adjusted to 12 seconds to ensure consistent data length.
Subsequently, three features are extracted from the signals:
the raw waveform, the amplitude spectrum, and the Short-
Time Fourier Transform (STFT) spectrogram. The window
length and frame shift of STFT are set to 1024 and 512, re-
spectively. Data augmentation techniques such as mixup are
applied by linearly interpolating. The Adam optimizer is em-
ployed with a learning rate of 1e-3 and a batch size of 64.

In terms of the network model, the subnetwork for the
raw waveform and amplitude spectrum features consists of
three one-dimensional convolutional layers followed by a
Flatten layer and four fully connected layers, using batch
normalization for feature extraction. Both subnetworks ul-
timately output 128-dimensional embeddings. For the STFT
spectrogram features, the subnetwork is a modified ResNet
composed of four basic blocks, followed by a Flatten layer,
with batch normalization applied to standardize the data dis-
tribution. This subnetwork finally outputs a 256-dimensional
embedding.

The output vectors from the three subnetworks are con-
catenated to form a 512-dimensional embedding. The loss
function chosen is the sub-cluster AdaCos loss, which uses a
dynamic adaptive scaling parameter and multiple class cen-
ters. Previous studies [15] have demonstrated the superior
performance of this loss function in anomalous sound detec-
tion tasks. The network model is shown in Figure 1:

3. PRE-TRAINED MODELS

In this section, five pre-trained models including HuBERT,
BEATs, Wav2Vec 2.0, WavLM, and UniSpeech-SAT are in-
troduced briefly.

HuBERT is a pre-trained self-supervised learning (SSL)
model designed to learn audio representations from un-
labeled raw signals to perform various audio tasks [16].
HuBERT uses an offline clustering algorithm to generate
pseudo-labels and employs a stacked CNNs model to extract
features from the raw signals. Finally, the audio input is pre-
dicted through transformer layers. The training of HuBERT
involves two steps: in the first step, pseudo-labels are gen-
erated using Mel-frequency cepstral coefficients (MFCC); in

Figure 1: The three-SubNetworks framework.

the second step, labels are generated by using the embed-
dings produced in the first step.

BEATs is an iterative audio pre-trained SSL model. The
model is trained using random projections as audio labels
and enhanced by pretraining or fine-tuning [17]. In each iter-
ation, discrete labels of unlabeled audio are generated using
an audio tagger. These labels are used to optimize the SSL
model with masking and discrete labels. After convergence,
the SSL model serves as a teacher model to guide the acoustic
representation and learn audio semantics through knowledge
distillation.

Wav2Vec 2.0 is an SSL speech representation learning
framework proposed by Facebook [18]. It consists of a multi-
layer convolutional feature encoder, a quantization module,
and several transformer layers. The feature encoder trans-
forms raw audio into latent representations of the audio. The
quantization module further discretizes these latent represen-
tations, which are considered as acoustic targets. Meanwhile,
the latent representations are randomly masked and input into
the transformer layers.

WavLM is a pretraining framework that utilizes masked
speech denoising and prediction [19]. Some of the inputs
are overlap masks or simulated noise, with the objective of
predicting pseudo-labels of the original audio in the masked
regions. The WavLM model comprises a convolutional en-
coder and a transformer. During training, WavLM randomly
transforms the input waveforms, masks 50% of the audio sig-
nal, and predicts the labels corresponding to the masked po-
sitions at the output.

UniSpeech-SAT is a speaker-aware pretraining model
based on UniSpeech [19]. This model uses a multi-
task learning framework with a contrastive loss, integrating
sentence-level contrastive loss with SSL objectives. Addi-
tionally, the model uses a sentence-level mix strategy for
speech enhancement.
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4. RESULT AND ENSEMBLE STRATEGY

Table 1 presents the results of the five pre-trained models.
Table 2 compares the baseline results with those of the pro-
posed models using GMM and K-Means anomaly score cal-
culators.

Table 1: Pre-training model results.

Method HuBERT
/%

BERTs
/%

Wav2Vec
2.0/%

WavLM
/%

UniSpeech
-SAT/%

Bearing
AUC(source) 64.2 68.39 61.67 64.64 60.64
AUC(target) 72.48 63.44 65.32 71.4 65.04

pAUC 58.47 56.36 60.31 60.73 56.36

Fan
AUC(source) 55.6 51.15 55.92 55.43 56.75
AUC(target) 63.84 73.76 51.56 70.6 62.55

pAUC 51.89 56.63 54.47 60.57 52.47

Gearbox
AUC(source) 80.24 85.83 65.56 47.43 53.4
AUC(target) 80.24 84.2 69.2 52.76 67.11

pAUC 61.78 70.57 57.73 50.94 53.94

Slider
AUC(source) 61.08 64.96 50.52 55.6 53.64
AUC(target) 54.96 58.36 58.24 51.4 56.6

pAUC 48.73 51.89 48.63 49.89 50.94

ToyCar
AUC(source) 50.72 44.76 53 58.11 46.32
AUC(target) 47.31 56.4 43.99 40.08 45.99

pAUC 47.94 48.94 51.10 48.89 48.78

ToyTrain
AUC(source) 74.12 84.2 67.28 80.51 83.71
AUC(target) 62.68 41.2 51.4 52.28 45.52

pAUC 51.84 48.36 49.89 53.21 51

Valve
AUC(source) 86.76 83.04 87.2 77.27 87.68
AUC(target) 69.88 43.31 59.52 66.88 55.04

pAUC 63.47 55.63 70.95 57.10 64.52

All
AUC(source) 65.34 65.13 61.21 60.79 60.12
AUC(target) 62.77 56.71 55.86 55.72 55.64

pAUC 54.27 54.72 54.48 54.09 53.61
hmean score 60.41 58.52 57.04 56.73 56.33

The ensemble strategy employed in this paper is a mean
aggregation method. Given that the varying scores obtained
from different models, they are normalized firstly. The fi-
nal anomaly score is computed through ensemble aggrega-
tion based on specified proportions.

In this paper, four subsystems are proposed as follows.
Since the development dataset and the evaluation dataset are
significantly different in terms of machine types, each en-
semble is designed accordingly. Ensemble-1 combines the
proposed three-subnetworks. Ensemble-2 combines the pro-
posed network with results from the five pre-trained models.
Ensemble-3 integrates the proposed network model with the
best-performing HuBERT model among the five pre-trained
models. Ensemble-4 filters out models with low accuracy
before combining the networks. Table 3 shows the results of
these four ensembles proposed in this paper.

Table 2: Baseline and Three-SubNetwork model results.

Method Baseline
MSE/%

Baseline
MAHALA/%

Proposed
GMM/%

Proposed
KMeans/%

Bearing
AUC(source) 62.01 54.43 61.72 65.8
AUC(target) 61.4 51.58 69.99 73.31

pAUC 57.58 57.58 59.57 62

Fan
AUC(source) 67.71 79.37 63.44 58.04
AUC(target) 55.24 42.7 68 63.8

pAUC 57.53 53.44 56.31 56.89

Gearbox
AUC(source) 70.4 81.82 71.16 70.8
AUC(target) 69.34 74.35 74.4 71.72

pAUC 55.65 55.74 57.78 55.94

Slider
AUC(source) 66.51 75.35 97.52 98.8
AUC(target) 56.01 68.11 93.04 95.84

pAUC 51.77 49.05 75.05 89.31

ToyCar
AUC(source) 66.98 63.01 52.96 55.51
AUC(target) 33.75 37.35 45.12 54.6

pAUC 48.77 51.04 49.52 48.42

ToyTrain
AUC(source) 76.63 61.99 63.48 48.87
AUC(target) 46.92 39.99 60.36 62.04

pAUC 47.95 48.21 53 53.05

Valve
AUC(source) 51.07 55.69 95.31 95.64
AUC(target) 46.25 53.61 51.88 68.68

pAUC 52.42 51.26 62.78 70.05

All
AUC(source) 64.95 65.77 69.03 66.28
AUC(target) 50.27 49.59 62.94 67.91

pAUC 52.84 52.28 58.25 60.05
hmean score 55.33 55.04 63.10 64.57

Table 3: The result of ensemble.

Method Ensemble
-1/%

Ensemble
-2/%

Ensemble
-3/%

Ensemble
-4/%

Bearing
AUC(source) 65.68 67.32 66.08 67.03
AUC(target) 71.84 73.96 73.6 74.52

pAUC 59.78 59.89 59.47 60.26

Fan
AUC(source) 61.76 57.36 58.6 59.76
AUC(target) 66.4 67.68 66.63 69.64

pAUC 55.52 56.21 55.42 56.15

Gearbox
AUC(source) 71.08 76.44 75.87 81.36
AUC(target) 74.32 79.4 79.24 82.08

pAUC 57.68 60.05 60 63.68

Slider
AUC(source) 96.72 94.91 95.2 94.56
AUC(target) 94.72 91.16 92.39 87.96

pAUC 80.47 66.15 73.21 66.94

ToyCar
AUC(source) 48.68 49.52 48.84 49.64
AUC(target) 50.56 50.16 50.08 52.27

pAUC 49.21 48.31 48.63 48.26

ToyTrain
AUC(source) 60.96 69.52 66.24 72.08
AUC(target) 60.68 59.36 61.92 63.28

pAUC 53.26 53.15 53.84 53.84

Valve
AUC(source) 95.4 95.72 95.16 95.88
AUC(target) 55.32 55.76 56.68 64.12

pAUC 64.21 64.36 64.36 66

All
AUC(source) 67.79 69.35 68.65 70.73
AUC(target) 65.22 65.68 66.16 68.72

pAUC 58.74 57.7 58.4 58.58
hmean score 63.68 63.86 64.1 65.56
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5. CONCLUSIONS

In this paper, we propose a three-subnetwork structure for
anomalous sound detection. Classification networks, being
trained from multiple signal perspectives, are used as auxil-
iary tasks to extract signal embeddings. Additionally, data
augmentation technique is included and several large pre-
trained models are integrated. Compared to the AE Baseline,
this method shows significant improvements in both AUC
and pAUC metrics. Four results of distinct ensemble ap-
proach are given.
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