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ABSTRACT
This report presents the systems developed and submitted by Forte-
media Singapore (FMSG) and Joint Laboratory of Environmental
Sound Sensing (JLESS) for DCASE 2024 Task 4. The task focuses
on recognizing event classes and their time boundaries, given that
multiple events can be present and may overlap in an audio record-
ing. The novelty this year is a dataset with two sources, making
it challenging to achieve good performance without knowing the
source of the audio clips during evaluation. To address this, we
propose a sound event detection method using domain generaliza-
tion. Our approach integrates features from bidirectional encoder
representations from audio transformers and a convolutional recur-
rent neural network. We focus on three main strategies to improve
our method. First, we apply mixstyle to the frequency dimension
to adapt the mel-spectrograms from different domains. Second, we
consider training loss of our model specific to each datasets for their
corresponding classes. This independent learning framework helps
the model extract domain-specific features effectively. Lastly, we
use the sound event bounding boxes method for post-processing.
Our proposed method shows superior macro-average pAUC and
polyphonic SED score performance on the DCASE 2024 Challenge
Task 4 validation dataset and public evaluation dataset.

Index Terms— sound event detection, semi-supervised learn-
ing, domain generalization, mixstyle

1. INTRODUCTION

Sound event detection (SED) [1–5] involves identifying sound
events from acoustic signals and accurately classifying them into
specific categories with timestamps, considering various acoustic
environments. DCASE 2024 Task 4 [6], entitled “Sound Event De-
tection with Heterogeneous Training Dataset and Potentially Miss-
ing Labels,” focuses on SED. This task follows up on DCASE 2023
Task 4A [7, 8] and Task 4B [9] on the following aspects:

• DCASE 2023 Task 4A evaluated systems for detecting sound
events using weakly labeled data (without timestamps) and un-
labeled data in the DESED dataset [10]. The goal was to pro-
vide both event class and event time localization, despite mul-
tiple overlapping events in an audio recording.

• DCASE 2023 Task 4B evaluated systems for detecting sound
events with soft labeled data from the MAESTRO dataset [11].
This task focused on exploring the significance of using soft
labels for SED.

DCASE 2024 Task 4 aims to unify the setups of both the tasks
of 2023 edition. Specifically, instead of training an SED model on
each subtask separately with its dataset, an intriguing approach is to
just train a single model on all available datasets. The goal is still
to provide event classes along with their time boundaries, even with
multiple overlapping events. This task explores leveraging train-
ing data with varying annotation granularity (temporal resolution,
soft/hard labels). Systems will be evaluated on labels with differ-
ent granularity to understand their behavior and robustness for var-
ious applications. Target classes in different datasets also differ, so
sound labels present in one dataset might not be annotated in an-
other. The systems need to handle potentially missing target labels
during training and perform without knowing the origin of the audio
clips at evaluation time.

Although previous years’ challenges, like the frequency dy-
namic convolutional recurrent neural network (FDY-CRNN) [12–
14], have shown notable performance in DCASE Task 4, this year’s
Task 4 introduces new challenges. The main challenge is how
to combine heterogeneous training datasets from diverse domains
with different annotations to improve performance. Deep neural
networks struggle to generalize across diverse domains, leading to
poor results in real-world scenarios. Therefore, domain general-
ization (DG) [15] has become an essential research topic in fields
like computer vision, audio processing, and natural language pro-
cessing. Inspired by the exploration in DCASE Task 1 [16], which
dealt with audio clips from multiple devices, we propose using the
domain generalization approach for this year’s Task 4.

In this technical report, we outline our contributions to our sub-
mission for DCASE 2024 Task 4. The primary contributions of our
submissions are as follows:

• We utilize the frame-level embeddings generated by the pre-
trained BEATs model in late-fusion with the FDY-CRNN and
then fed into the recurrent neural network with the classifier.

• We leverage the DG to explore the appropriate way to use the
heterogeneous training datasets from diverse domains.

• We modify the baseline framework to independently compute
the training loss for our model, which is specific to each dataset
for their corresponding classes.

• We employ the sound event bounding boxes method as a post-
processing method to further enhance the performance in the
DESED dataset.
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2. DATASET

The DCASE 2024 Challenge Task 4 comprises two datasets, and
participants must use both in the training phase and provide one
individual model that performs well for the two datasets.

2.1. DESED dataset

DESED [10] consists of 10-second audio clips either recorded in
a domestic environment or synthesized to reproduce such an envi-
ronment. It features annotated sound events from 10 classes: alarm
bell ringing, blender, cat, dishes, dog, electric shaver/toothbrush,
frying, running water, speech, and vacuum cleaner. The synthetic
part of the dataset is generated with Scaper [17] using foreground
events from the Freesound datasets and backgrounds from YouTube
videos and the Freesound subset of the MUSAN [18] dataset. The
real-world recording part comes from AudioSet [19] and includes a
weakly annotated set (1,578 clips), an unlabeled set (14,412 clips),
and a strongly annotated portion (3,470 clips).

2.2. MAESTRO Real dataset

MAESTRO Real [11, 20], used in the DCASE 2023 Task 4B chal-
lenge, consists of a development set (6,426 clips) and an evalu-
ation set of long-form real-world recordings. This dataset con-
tains multiple temporally strong annotated events with soft labels
from 17 classes. However, in this challenge, only 11 classes are
evaluated, as the other 6 do not have confidence levels over 0.5.
These classes are: birds singing, car, people talking, footsteps, chil-
dren voices, wind blowing, brakes squeaking, large vehicle, cut-
lery and dishes, metro approaching, and metro leaving. This data
was annotated using crowdsourcing, where temporally-weak la-
beling is combined with a sliding window approach to determine
events’ temporal localization. In order to obtain the soft labels, an-
notations of multiple annotators are aggregated via MACE [21].
The recordings are taken from the TUT Acoustic Scenes 2016
dataset [22] and are between 3 to 5 minutes long.

3. PROPOSED APPROACH

3.1. Baseline

The baseline system is inherited from previous DCASE Task 4 chal-
lenges [7,23] and consists of a CRNN [24] that uses self-supervised
features from the pre-trained BEATs [25] model. First, the CRNN
has a convolutional neural network (CNN) encoder with 7 convolu-
tional layers, batch normalization, gated linear units, and dropout,
followed by a bi-directional gated recurrent unit (biGRU) layer.
Then, BEATs features are concatenated with the CNN-extracted
features before the biGRU layer. Average pooling is applied to the
BEATs features to match the sequence length of the CNN encoder.
Finally, Attention pooling is used to derive clip-wise and frame-
wise posteriors. During training, the BEATs model remains frozen,
and the mean-teacher framework [26, 27] is used to leverage unla-
beled and weakly labeled data. The attention pooling mechanism in
the baseline model uses the softmax function over classes. Before
applying softmax, values for unlabeled classes (not in the current
clip dataset) are masked to negative infinity.

As a preprocessing step, some DESED events are mapped to
similar classes in MAESTRO. For example, in DESED, “speech”
is a super-class for “people talking,” “children’s voices,” and “an-
nouncements” in MAESTRO. “Dishes” in DESED corresponds
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Figure 1: Architecture of (a) CRNN (Baseline) (b) FDY-CRNN.
when hop length is 256.

to “cutlery and dishes” in MAESTRO, and “dog” in DESED is
a super-class for “dog bark”. This mapping ensures that when
computing the loss for MAESTRO, the network output for similar
classes in DESED is adjusted accordingly.

3.2. Domain generalization

In DCASE 2024 Challenge Task 4, we must train one model on
heterogeneous datasets. As mentioned in Section 2, the DESED
and MAESTRO Real datasets come from different sources. Even
if they share the same segment labels, their features can be quite
different, confusing model training because domain information is
not useful. domain generalization (DG) [15] aims to address this
problem by learning robust models against data distribution changes
across domains, known as domain shift. The goal is to ensure that
the trained model can generalize well to any domain by learning
domain-invariant feature representations that remain discriminative
across multiple domains.

MixStyle [28] is a common DG method motivated by the ob-
servation that the visual domain is closely related to image style.
Specifically, MixStyle mixes the feature statistics of two instances
with a random convex weight to simulate new styles. However,
unlike images where 2D convolution operates along spatial dimen-
sions, in case of audio, 2D convolution operates on frequency
and temporal information. Therefore, domain information may
not be mainly distributed in channel statistics in audio as it is in
MixStyle. In [16], the authors analyzed the relationship between
the domain and the statistics of each feature dimension showing
that the frequency feature dimension carries more domain-relevant
information than the channel dimension. This inspired us to adopt
frequency-wise MixStyle for applying it to both internal CNN fea-
tures and the mel-spectrogram before feeding data into the CNN.
After integrating frequency-dynamic attention and MixStyle, we
propose a new model, which is introduced in the next section. We
note that MixStyle is not applied during testing.

We also explored several other DG methods including the resid-
ual normalization [29], and adapted them to the audio task. How-
ever, the experiments demonstrate that the freqwise mixstyle has
straightforward improvement for heterogeneous training datasets.
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3.3. Network

In this work, we also employed FDY-CRNN from [7], which uses
frequency-adaptive kernels to enforce frequency dependency in 2D
convolutions. In the baseline CRNN architecture shown in Figure
1(a), we replaced the standard 2D convolutional blocks with FDY-
convolutional blocks, as illustrated in Figure 1(b). The CNN part
consists of 7 blocks with the same number of filters as in the base-
line. In the FDY-convolutional block, batch normalization and gated
linear units are used.

3.4. Independent loss function

The model is trained using the binary cross-entropy (BCE) loss
function on DESED real-world strongly, synthetic, and weakly la-
beled data, as well as on MAESTRO soft-labeled data. Mean
squared error (MSE) is used for the mean-teacher [26, 27] pseudo-
labeling loss component, which is applied to both weak and unla-
beled data from DESED. When computing the loss for both com-
ponents on a particular clip, we avoid computing the loss for the
network outputs corresponding to classes that do not belong to the
clip’s original dataset. For example, in case of MAESTRO, we do
not compute the loss for DESED output logits even for classes that
have been cross-mapped as explained in the baseline. This is the
main difference between our system and the baseline in loss com-
putation.

3.5. Pretrained model

We utilize the pretrained BEATs model, which has achieved state-
of-the-art performance on AudioSet with a mean average precision
(mAP) of 0.486. The BEATs is an iterative self-supervised frame-
work for audio representation learning, using an acoustic tokenizer
and a semi-supervised learning model. Unlike previous models,
BEATs employs a self-distilled tokenizer to convert audio signals
into discrete labels. We use it to construct frame-level embeddings
of size 768, aligning with the recently released baseline approach.

3.6. Data augmentation

For this year’s challenge, we used two data augmentation methods.
We applied SpecAugment-style time-wise masking [30] to the fea-
tures extracted by the pre-trained model and independently to the
features extracted from the CNN encoder. This strategy, referred to
as “dropstep”, helps improve model robustness by adding variety to
the training data.

Additionally, we used the Mixup [31] strategy. This helps in
linear interpolation and improves model robustness. Mixup is ap-
plied independently on the MAESTRO and DESED datasets.

3.7. Curated set

To solve the mismatch between the synthetic valid dataset and the
real-world test set, we further split the 3,470 clips of the strongly an-
notated AudioSet part to get the extra real valid dataset (373 clips).

3.8. Sound event box-based post-processing

Existing systems [32] commonly predict sound presence confidence
in short time frames. Then, thresholding produces binary frame-
level presence decisions, with the extent of individual events de-
termined by merging consecutive positive frames. In the previous
challenge [7], we used median filtering as post-processing.

A recent study in [33] shows that frame-level thresholding de-
grades the prediction of event extent by coupling it with the system’s
sound presence confidence. Inspired by bounding box predictions in
image object detection [34] SEBBs are one-dimensional bounding
boxes defined by event onset time, event offset time, sound class,
and confidence. They represent sound event candidates with a scalar
confidence score. The final SED is derived by class-wise event-level
thresholding of the SEBBs’ confidences. SEBBs whose confidence
exceeds the threshold are accepted as detections, while the rest are
discarded. The threshold controls the sensitivity of systems. For
high sensitivity/recall (few missed hits), a low detection threshold
detects events even when the system’s confidence is low. For high
precision (few false alarms), a higher threshold detects only events
with high confidence. With SEBBs, the sensitivity of a system can
be controlled without impacting the detection of an event’s onset
and offset times, which was a problem with the previous frame-level
thresholding approach.

We first tune the hyperparameters for the change-point-based
predictor of Sound Event Bounding Boxes (cSEBBs) [33] based
on the strong validation dataset, then we use cSEBBs as the post-
processing method in our system.

4. EXPERIMENTAL SETUP

4.1. Feature extraction

All audio clips are resampled to a 16 kHz mono channel using Li-
brosa. They are segmented with a window size of 2048 samples
and a hop length of either 160 or 256 samples. A short-time Fourier
transform is applied to extract spectrograms. Mel-filters are then
used to create log-mel spectrograms spanning from 0 to 8 kHz.
Clips shorter than 10 seconds are padded with silence if needed.

4.2. Training method

For all experiments, a batch size of 60 was used, comprising the
strong set, weak set, and unlabeled set, with batch size distribution:
approximately 1/5 of the maestro dataset, 1/10 of the synth dataset,
1/10 of the synth+strong dataset, 1/5 of the weak dataset, and 2/5
of the unlabeled dataset. The training process included 50 epochs
for warmup, a maximum of 300 epochs, and an epoch decay of
100. Gradient clipping was set at 5.0, the EMA factor for the mean
teacher [26] was 0.999, validation was performed every 10 epochs,
and the maximum weight for self-supervised loss was 2. The Adam
optimizer was employed with a learning rate of 0.001. An expo-
nential warmup was applied for the initial 50 epochs, and no early
stopping was implemented during the training process.

4.3. Evaluation metric

This year, this task requires us to consider the PSDS [35, 36] for
evaluation. Event onset and offset times required for PSDS com-
putation are only available for DESED data and classes, so PSDS
is only evaluated on this fraction of the evaluation set. For MAE-
STRO, segment-based labels (one second) are provided, and we use
the segment-based mean (macro-averaged) partial area under the
ROC curve (mPAUC) as the primary metric, with a maximum FP-
rate of 0.1. mPAUC is computed with respect to hard labels (thresh-
old = 0.5) for the 11 classes listed. DESED and MAESTRO clips
are anonymized and shuffled in the evaluation set to prevent manual
domain identification.
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Table 1: Performance in PSDS and mPAUC of different single-systems on the DESED development set (D-PSDS), DESED public evaluation
set (PE-PSDS), and MAESTRO evaluation set (mPAUC) including frequency-dynamic convolution (FDY), domain generalization (DG), and
strong validation dataset (Strong Val). ‘AdaResNorm’ and ‘ResNorm’ stands for adaptive residual normalization and residual normalization,
respectively. Based on the joint score, the sum of PE-PSDS and mPAUC, the systems with ‘*’ are chosen for final submission.

System DG Hop length FDY Strong Val D-PSDS PE-PSDS (raw) PE-PSDS (cSEBBs) mPAUC Joint score
Baseline - 256 - - 0.483 0.529 - 0.721 1.250

S-1* MixStyle 256 - - 0.506 0.587 0.629 0.737 1.366
S-2 MixStyle 256 ✓ - 0.510 0.590 0.600 0.753 1.353

S-3* MixStyle inside FDY 256 ✓ - 0.503 0.590 0.634 0.737 1.371
S-4 MixStyle 256 - ✓ 0.500 0.595 0.615 0.745 1.360
S-5 AdaResNorm 256 - - 0.493 0.589 0.593 0.747 1.340
S-6 ResNorm 256 - - 0.491 0.595 0.595 0.733 1.328

S-7* MixStyle 160 - - 0.480 0.588 0.643 0.748 1.391
S-8 MixStyle inside FDY 160 ✓ - 0.485 0.599 0.629 0.737 1.366

4.4. Ensemble

Ensemble modeling is a technique that leverages the strengths of
multiple models to improve overall performance and enhance the
generalization capability of a system. In our system, ensemble mod-
eling plays a crucial role to improve system performance. These
models work together to extract the best aspects from the highest-
performing models. To generate final predictions, we aggregate the
individual predictions from all the models and calculate their av-
erage. This approach ensures that every model contributes to the
overall performance of the ensemble system.

5. RESULTS AND ANALYSIS

In this section, we first present the findings of the of the 3 single
systems, followed by 1 ensemble system that we submitted.

5.1. Single-systems

The PSDS measures the performance of systems on SED for the
DESED subsets. In the DESED development set, the baseline sys-
tem achieves a PSDS of 0.483. Systems S-1* (0.506), S-2 (0.510),
S-3* (0.503), and S-4 (0.500) outperform the baseline, showing sig-
nificance of MixStyle to improve performance. Systems S-5 (0.493)
and S-6 (0.491) show slight improvements, while S-7* (0.480) and
S-8 (0.485) perform slightly worse, suggesting the hop length of
160 might be less effective. For the public evaluation set, while the
baseline achieves 0.529 our systems S-1* (0.587), S-2 (0.590), S-3*
(0.590), S-4 (0.595), and S-8 (0.599) outperform the baseline, with
S-8 achieving the highest score, indicating the benefit of integrating
MixStyle inside FDY.

The mPAUC is another key metric that is used for MAESTRO
subset. The baseline system achieves an mPAUC of 0.721. System
S-1* shows a significant improvement with 0.737, highlighting the
positive impact of MixStyle on generalization. System S-2 achieves
the highest mPAUC of 0.753, which indicates combining MixStyle
with frequency-dynamic convolution significantly enhances perfor-
mance. System S-3* also performs well with 0.737, reinforcing
the benefits of domain generalization. Systems S-5 (0.747) and S-6
(0.733) show moderate improvements with adaptive normalization
techniques, while S-7* (0.748) demonstrates excellent performance
even with a shorter hop length. System S-8, integrating MixStyle in-
side FDY, shows consistent improvement with an mPAUC of 0.737.

When combining results from both PSDS and mPAUC, it
becomes more evident that systems integrating MixStyle and

frequency-dynamic convolution (FDY) outperform the baseline
across different datasets. System S-8, for instance, achieves the
highest public evaluation set PSDS (0.599) and a strong mPAUC
(0.737), demonstrating its robustness and adaptability. Systems S-
1* and S-3* also show balanced improvements across both metrics,
making them reliable choices for the final submission.

We chose systems S-1*, S-3*, and S-7* for final submission due
to their superior performance and generalization capabilities. Sys-
tem S-1* achieves high scores across all metrics, indicating robust
generalization. System S-3* combines MixStyle with frequency-
dynamic convolution, effectively enhancing domain generalization
and event-level detection. System S-7* shows excellent perfor-
mance with a shorter hop length, demonstrating the model’s adapt-
ability to different configurations. These single-systems consis-
tently outperform the baseline and showed significant improve-
ments in terms of both the performance metrics, making them the
best candidates for submission.

5.2. Ensemble system

We used all the single-systems except S-5 and S-6 for the ensemble
system. After applying the ensemble method mentioned in the pre-
vious section, we achieved the highest development dataset PSDS
of 0.520, a raw public evaluation dataset PSDS of 0.620, and an
mPAUC of 0.762. After applying cSEBBs post-processing, the pub-
lic evaluation dataset PSDS improved to 0.656, and thereby im-
proved the joint score to 1.418. We submitted this system as our
only ensemble system.

6. CONCLUSION

This report presents SED systems by Fortemedia Singapore and the
Joint Laboratory of Environmental Sound Sensing as a participation
to DCASE 2024 Task 4. We addressed the challenge of recognizing
overlapping events from different sources using a method that inte-
grates bidirectional encoder representations from audio transform-
ers and a convolutional recurrent neural network. Our key strategies
included applying MixStyle to adapt multi-domains, using an inde-
pendent learning framework for dataset-specific training loss, and
employing sound event bounding boxes for post-processing. As a
part of our submission we submitted 3 single-systems and 1 en-
semble system. Our ensemble system achieved the highest public
evaluation dataset PSDS of 0.656, and mPAUC of 0.762, thereby
showed significant improvment over the challenge baseline.
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