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ABSTRACT

Sound scene synthesis aims to generate a variety of environment-
related sounds within a specific scene. In this work, we proposed
a system for DCASE 2024 challenge task 7. The proposed sys-
tem is based on the official baseline model AudioLDM, a diffusion-
based text-to-audio generation model. The system first trained with
large-scale datasets and then downstream into this task via trans-
fer learning. Addressing the challenge of no target audio data, we
implemented an automated pipeline to synthesize audio and gener-
ate corresponding captions that mirror the semantic structure of the
task. Despite the absence of dedicated training and testing sets for
this task, our robust audio synthesis model effectively adapts the
given conditions, fulfilling all the task requirements. Our system
achieved a Fréchet Audio Distance (FAD) score of 55.1, surpassing
the baseline system’s FAD score of 61.3 calculated by the official
evaluation toolkit.

Index Terms— Sound scene generation, Diffusion model,
Transfer learning, Language model

1. INTRODUCTION

Nowadays, diffusion-based generative architecture has contributed
to remarkable breakthroughs in audio generation [1, 2, 3]. A par-
ticular area of interest within this field is the generation of environ-
mental sounds, which include both sound effects and natural vocal
sounds. The DCASE 2024 challenge Task 7 is organized to tackle
this challenging problem. In this report, we introduce our system
submitted to this challenge.

Specifically, Task 7 focuses on synthesizing sounds in various
scenarios, involving a combination of foreground and background
sounds. The input to the system is structured as a prompt compris-
ing a foreground source described by an action verb and a back-
ground source. For example, a prompt might be: “a dog is bark-
ing with water in the background.” Notably, the categories of fore-
ground and some categories of background sounds are not prede-
fined, which adds complexity to the task and makes it challenging
to train the model into an expert in generating accurate audio repre-
sentations in this particular domain.

State-of-the-art (SOTA) audio generation models typically fol-
low a two-stage generation pipeline. They use an encoder-decoder
architecture to compress the waveform and a generative module to
produce the audio features. The baseline system for Task 8 [4] em-
ploys a similar approach: a latent diffusion-based model to gen-
erate audio features within the latent space, a variational autoen-
coder (VAE) decoder to reconstruct the information into a mel spec-
trogram, and a pre-trained generative adversarial network (GAN)
vocoder [5] to produce the final waveform.

Our proposed system builds on this baseline with several en-
hancements. We first substitute the previous CLAP model [6] with
the TS model [7] for text embedding, then integrate a cross-attention
module to effectively align the input conditions with the system.
This change is crucial since the task relies on text prompts and
lacks a development dataset, necessitating a robust and adaptable
model. Additionally, to improve the quality of audio generation,
we replace the HifiGAN vocoder with BigVGAN [8], known for
its superior performance at higher frequencies. Furthermore, the
task requires generating 32kHz, 4-second audio clips. Most exist-
ing audio-language datasets feature 10-second waveforms, and the
baseline model is trained on 16kHz audio. To align with the task
requirements, our system is initially trained on 32kHz, 10-second
audio and subsequently fine-tuned on 32kHz, 4-second clips us-
ing transfer learning techniques. To address the scarcity of training
data, we also generate synthetic audio and captions by concatenat-
ing various audio clips during the fine-tuning stage.

The structure of this report is as follows: Section 2 presents the
details of our system architecture. Section 3 describes the training
pipeline of our system, including specific training configurations
and data processing methods for each stage. Finally, we present our
results and conclude the report.

2. SYSTEM METHODOLOGY

Similar to the baseline system, the system also consists of four main
sections, a text embedding encoding module, an audio feature gen-
erating module, a waveform reconstruction module and a similarity
selection module. Our system takes the same diffusion-based back-
bone for sound generation and a VAE decoder for mel-spectrogram
reconstruction. Instead of the CLAP model used for text embed-
ding in the baseline model, we use the T5 [7] model, which is more
capable of extracting the semantic feature of textual information.
Nevertheless, the previous Hifi-GAN-based vocoder is replaced by
BigVGAN-based for better waveform generation on high-frequency
domains. As for the inference procedure, we follow the idea of Au-
dioLDM [4] by generating several audios and using the CLAP [6]
model to pick the candidate that best matches the prompt.

Like the baseline system, our architecture comprises four pri-
mary components: a text embedding encoding module, an au-
dio feature generation module, a waveform reconstruction module,
and a similarity selection module. We utilize the same diffusion-
based framework for sound generation and a VAE decoder for mel-
spectrogram reconstruction.

However, our system introduces several key enhancements. In-
stead of the CLAP model for text embedding used in the base-
line, we employ the TS5 [7] model, which shows better perfor-
mance at capturing the semantic nuances of textual input. For wave-
form generation, we replaced the previous Hifi-GAN-based vocoder
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with BigVGAN, which provides superior performance in generat-
ing high-frequency content. During inference, our approach follows
the methodology of AudioLDM [4]. We generate multiple audio
samples and then use the CLAP [6] model to select the candidate
that best aligns with the given prompt. This process ensures that
the generated audio is closely matched to the specified textual de-
scription. Detailed explanations of these methods are provided in
the following section.

2.1. Text encoding

For embedding the input text prompt, we replaced the previous
CLAP model with the Flan-T5 model, which has demonstrated su-
perior performance in extracting semantic features from text [9].
Unlike the CLAP encoder, which can process both audio and text,
the pre-trained Flan-T5 model is specifically designed to handle text
inputs only. To enhance the robustness of our system and com-
pensate for this specialization, we trained the model using a larger
audio-caption dataset. This approach ensures that our system can
effectively leverage the rich semantic information embedded in tex-
tual prompts.

2.2. Audio feature generating

Our system applied the latent diffusion model (LDM) for the gen-
eration. In detail, our model takes the textual embedding as the
condition and generates the related audio feature as latent tokens.
LDM consists of two processes, a forward process that incremen-
tally adds noise € to the latent vector z0, and a reverse process
entails the model predicting the transition probabilities €f for each
step n. resulting in a sequence of latent vectors zn over N steps,
configuring the training loss as:

Ln(e) :Ezo,e,nHe_69(zn7n7Ex)H§ (D

Previously, the conditioning strategy in our model involved
adding the textual features as an additional layer concatenated with
the step information within each layer of the U-Net backbone. Our
proposed method integrated the conditioning information directly
into the network by augmenting the feature maps at every convolu-
tional layer. To more effectively leverage the embedding conditions
from the T5 model, we have refined this approach. Instead of sim-
ple concatenation, we now employ a cross-attention module after
each convolution layer. This enhancement allows the model to in-
corporate the text embeddings into the audio generation process.

2.3. VAE decoder & HiFi-GAN vocoder

We trained a 32kHz Variational Autoencoder (VAE) to decode the
latent feature tokens into mel-spectrograms. Following the ap-
proach of the baseline model, our VAE is designed to compress
mel-spectrograms into latent space tokens z0 and then reconstruct
these tokens back into mel-spectrograms. For the final waveform
generation, we employed BigVGAN [8], a state-of-the-art vocoder
known for its ability to produce high-fidelity audio. BigVGAN
excels at generating detailed sound waveforms, particularly in the
high-frequency range, which is crucial for achieving clear and nat-
ural audio outputs.

2.4. Similarity selection

To further enhance the sound quality, AudioLDM integrated a scor-
ing mechanism to select the most suitable audio outputs. This mech-
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anism leverages the CLAP model, which utilizes a shared latent
space for both audio and text embeddings. By calculating the co-
sine similarity between the generated audio and the target text em-
beddings, the system can effectively measure how closely the au-
dio matches the intended description. In our approach, we further
improve the overall performance by replacing the previous CLAP-
LAION model [6] with CLAP-Micro [10]. The CLAP-Micro model
has demonstrated greater robustness across various features, mak-
ing it more effective in assessing the relevance and quality of the
generated audio in diverse scenarios.

3. EXPERIMENTS

3.1. Dataset

Challenge official dataset. The official dataset for the challenge
provides only 60 audio feature embeddings derived from three dif-
ferent audio encoders, which is insufficient for training a robust and
powerful system. To address this limitation, we initially trained our
model on a large-scale audio-caption dataset with 32kHz, 10-second
data, followed by fine-tuning using 4-second audio-caption pairs.
Pretraining dataset. Our pretraining stage utilized an extensive au-
dio dataset that captured a wide variety of sounds. In detail, we em-
ployed AudioSet, the largest available audio dataset, which contains
approximately 2.1 million 10-second audio clips annotated with la-
bels. For textual representation processed by the T5 encoder, we
used captions automatically generated by Large Language Models
(LLMs) to match the audio content.

Fine-tuning dataset. For the fine-tuning stage, we used a dataset
comprising 4-second audio samples to align with the task require-
ments. We sourced this data from three distinct datasets: Wave-
cap [11], ESC50 [12], and Urbansound8K [13], only collecting the
audio clips of less than 4 seconds. To prepare the training data, two
different sound categories into each sample, with one serving as a
foreground source and the other as a background source. Captions
were synthetically generated to reflect the sequence structure de-
scribed in the task, ensuring coherence with the expected outputs.
All the audio and captions are generated randomly when loading
the data to enhance the robustness of the model.

3.2. Experimental process

As an ensemble model, our system is developed in three stages.
First, the decoder and vocoder are trained with 32Khz audio for
more than 100K steps independently. Then, the diffusion model is
developed for 50K steps on extensive datasets in 10 seconds. Lastly,
the system is fine-tuned through transfer learning on 4-second audio
clips for another 50K steps.

3.3. Results

Table 1: The FAD score using different audio embedding models,
where P is short for PANNS, M for Micro.lapandV forVGG —
ish.

Model FADp| FAD,| FADy|

Baseline 61.3 - -
Proposed System 55.1 312.5 7.5
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Although our system has achieved significant improvements in
various aspects, enhancing performance for this task remains chal-
lenging without access to specific training data. Table ?? illustrates
the Fréchet Audio Distance (FAD) scores for different audio em-
bedding strategies as provided by the official evaluation tool [14].
When comparing the audio generated by our system to the audio
embeddings from the development set, our system consistently out-
performs the baseline across all three audio embedding approaches.

4. CONCLUSION

This technical report details the system we developed for the
DCASE 2024 Challenge Task 7. Our approach builds on the base-
line model and integrates several advanced techniques to enhance
audio quality. Experimental results demonstrate that our system sig-
nificantly surpasses the baseline model, achieving substantial per-
formance improvements. Tackling the challenge of developing a
system without specific development and evaluation sets not only
presents a significant research opportunity but also aligns well with
the practical demands of real-world applications. In the future, we
aim to explore the potential of even more robust and versatile mod-
els capable of excelling across diverse tasks.
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