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ABSTRACT
This report presents our submitted systems for the task 9 of DCASE
challenge: language-queried audio source separation (LASS).
LASS is the task of separating arbitrary sound sources using tex-
tual descriptions of the desired source, also known as “separate
what you describe”. Specifically, we first incorporate a dual-path
recurrent neural network (DPRNN) block into ResUNet, which is
significantly beneficial for improving the separation performance.
Then, we trained the proposed model using a large number of public
datasets, including Clotho, FSD50K, Audiocaps, Auto-ACD, and
Wavcaps. We trained the proposed model at 16 kHz and 32 kHz
respectively, and the 32 kHz model achieved the best separation
performance with an SDR of 8.191 dB on the validation set, which
is 2.483 dB higher than the challenge baseline.

Index Terms— Language-queried audio source separation,
DPRNN, ResUNet

1. INTRODUCTION

Language-queried audio source separation (LASS) [1] is the task of
separating sound sources using textual descriptions of the desired
source. LASS provides a useful tool for future source separation
systems, allowing users to extract audio sources via natural lan-
guage instructions. Such a system could be useful in many applica-
tions, such as automatic audio editing, multimedia content retrieval,
and augmented listening. The objective of LASS is to effectively
separate sound sources using natural language queries, thereby ad-
vancing the way we interact with and manipulate audio content.

As shown in Fig. 1, a LASS system is composed of a query
encoder and an audio source separation model. The query encoder
is used to convert textual descriptions into embeddings, which are
incorporated into the separation model. The challenge baseline
system 1 uses the text encoder of contrastive language-audio pre-
training model (CLAP) [2] as the query encoder, and applies Re-
sUNet [3] as the separation model.

ResUNet is a time-frequency domain model, consisting of an
encoder and a decoder. In ResUNet, convolutional layers are used
to extract local invariant features from the spectrogram input. How-
ever, convolutional layers cannot effectively extract dependencies
between frequency bins or temporal frames. Therefore, we incorpo-
rate dual-path recurrent neural network (DPRNN) [4] into ResUNet

1https://dcase.community/challenge2024/
task-language-queried-audio-source-separation
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Figure 1: The architecture of LASS system.

to learn dynamic audio information. DPRNN is composed of two
bidirectional-LSTMs (Bi-LSTMs) [5], which can be used to extract
acoustic information in the frequency domain and temproal domain
iteratively.

2. METHODS

2.1. ResUNet with DPRNN

In order to perform dynamic feature extraction, we incorporate a
DPRNN block between the encoder and decoder in ResUNet to iter-
atively apply time-domain and frequency-domain modeling. Fig. 2
shows the architecture of ResUNet and ResUNet with DPRNN.

As shown in Fig. 3, the DPRNN block is mainly composed
of two Bi-LSTMs. We pass the embedding Z ∈ RC×T×F gen-
erated by the encoder through Bi-LSTMs in the time domain and
frequency domain sequentially, where C, T, and F are the number
of channels, frames, and frequencies, respectively. In this way, the
DPRNN block can effectively extract dependencies between frames
and frequency bins, improving the model’s semantic understanding
of dynamic audio information.

2.2. Loss function

We train the model end-to-end using an L1 loss function between
the predicted and target waveforms. Since waveform-based L1 loss
is simple to implement and has shown good performance on univer-
sal sound separation tasks [6].

Loss = ||s− ŝ||1 (1)

where s is the target waveform and ŝ is the separated waveform.
The lower loss value indicates that the separated signal ŝ is closer
to the ground truth signal s.
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Figure 2: The architecture of ResUNet/ResUNet with DPRNN.

3. EXPERIMENTAL SETUPS

3.1. Datasets

In this task, publicly available audio-caption paired datasets are
used for training and validation. For training, we use data from
the following datasets:

⋆ DCASE challenge task 9 development dataset in 2024
(DCASE-T9Dev-2024)1: This dataset is composed of audio sam-
ples from FSD50K [7] and Clotho v2 [8] datasets. Clotho v2 con-
sists of 6972 audio samples, each audio clip is labeled with five
captions. And FSD50K contains over 51K audio clips manually
labeled using 200 classes drawn from the AudioSet [9] ontology.
For each audio clip in the FSD50K dataset, one automatic caption
was generated for each audio clip by prompting GPT-4 [10] with its
sound event tags.

⋆ Audiocaps [11]: This is a large-scale dataset of 46K audio
clips with human-written text pairs collected via crowdsourcing on
the AudioSet dataset.

⋆ Auto-ACD [12]: This dataset contains over 1.9M audio-text
pairs, which were generated based on a series of public tools or
APIs, in which audio samples were from AudioSet and VGGSound
[13]. We selected 100K audio clips from the Audioset portion of
Auto-ACD for training.

⋆ Wavcaps [14]: This dataset is the first large-scale weakly-
labelled audio captioning dataset, comprising approximately 400K
audio clips with paired captions. Audio clips and their raw de-
scriptions were from diverse sources, including FreeSound2, BBC
Sound Effects3, SoundBible4, and AudioSet. We sampled 200K au-
dio clips from FreeSound portion of Wavcaps for training.

For validation, we use data from DCASE challenge task 9 val-
idation dataset in 2024 (DCASE-T9Val-2024)1. The dataset con-
tains 2100 audio clips, which were sampled from data uploaded to
FreeSound between April and October 2023. Each audio file has
been chunked into a 10-second clip and converted to mono 16 kHz.

2https://dcase.community/challenge2021
3https://sound-effects.bbcrewind.co.uk/
4https://soundbible.com/
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Figure 3: The architecture of the DPRNN block.

3.2. Evaluation Metrics

We use SDR (signal-to-distortion ratio), SDRI (signal-to-distortion
ratio improvement) and SI-SDR (scale-invariant signal-to-distortion
ratio) for evaluation.

3.3. Training Setups

For 16 kHz models, we resample all training audio samples to 16
kHz and convert the waveform to spectrogram using short-time
Fourier transform (STFT) with a window size of 1024 and a hop
size of 160. Similarly, for 32 kHz models, we resample training au-
dio clips at 32 kHz, then get their spectograms through STFT with
a window size of 2048 and a hop size of 320. We apply an Adam
optimizer with a learning rate of 0.0001 to train the model with the
batch size of 12 on 2 NVIDIA RTX 3090 GPU cards.

It should be noted that because audio samples in DCASE-
T9Val-2024 are 16kHz, when we evaluate the 32kHz model, the
audio is first upsampled to 32kHz and fed into the model, and then
the output is downsampled to 16kHz.

4. RESULTS AND DISCUSSIONS

Then challenge baseline system1 trained ResUNet-16k on DCASE-
T9Dev-2024 for 200K steps. In order to explore the effectiveness of
the DPRNN block, following the baseline, we trained ResUNet-16k
with DPRNN using the same settings. Table 3 shows the perfor-
mance of ResUNet-16k with/without DPRNN on DCASE-T9Val-
2024. By incorporating the DPRNN block into ResUNet-16k, the
separation performance is improved, with an improvement of 0.27
dB on SDR, which demonstrates that the Bi-LSTMs in DPRNN
play an important role in audio separation process.

Then, we use all training data to finetune the models for bet-
ter separation performance. For 16 kHz models, we use the chal-
lenge baseline checkpoint1 as the initialization parameter, and for
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Table 1: Results of ResUNet-16k with/without DPRNN on
DCASE-T9Val-2024.

Model DPRNN SDR ↑ SDRI ↑ SI-SDR ↑

ResUNet-16k1
✗ 5.708 dB 5.673 dB 3.862 dB

✓ 5.978 dB 5.943 dB 3.975 dB

32 kHz models, we use ResUNet-32k [15] as the initialization pa-
rameter. Table 2 presents the results on DCASE-T9Val-2024, it can
be seen that in both scenarios (16 kHz and 32 kHz), the model with
DPRNN can achieve better performance than the model without
DPRNN. And the improvement brought by DPRNN on ResUNet-
32k is smaller than that on ResUNet-16k. One potential reason may
be that we need more steps to obtain better performance of DPRNN.

Table 2: Results of ResUNet-16k and ResUNet-32k with/without
DPRNN on DCASE-T9Val-2024.

Model DPRNN SDR ↑ SDRI ↑ SI-SDR ↑

Init

ResUNet-16k1 ✗ 5.708 dB 5.673 dB 3.862 dB

Finetune (2M steps)

ResUNet-16k ✗ 7.087 dB 7.052 dB 5.413 dB

ResUNet-16k ✓ 8.007 dB 7.972 dB 6.459 dB

Init

ResUNet-32k [15] ✗ 8.009 dB 7.974 dB 6.533 dB

Finetune (1M steps)

ResUNet-32k ✗ 8.047 dB 8.012 dB 6.558 dB

ResUNet-32k ✓ 8.191 dB 8.156 dB 6.794 dB

We finally submitted 4 systems to the chanllenge, details are
described as follows:

• submission 1: ResUNet-16k without DPRNN (single model).
• submission 2: ResUNet-16k with DPRNN (single model).
• submission 3: ResUNet-32k with DPRNN (single model).
• submission 4: ResUNet-32k with DPRNN + ResUNet-32k

without DPRNN + ResUNet-16k with DPRNN (ensemble).

5. CONCLUSIONS

This technical report outlines our research on DCASE Challenge
Task 9, focusing on language-queried audio source separation. Ini-
tially, we integrated the DPRNN block into ResUNet, demonstrat-
ing its advantageous impact on enhancing source separation perfor-
mance. Subsequently, through the utilization of extensive public
datasets for model fine-tuning, we have achieved improved separa-
tion results. Notably, our proposed ResUNet-32k with DPRNN has

Table 3: Results of submitted systems on DCASE-T9Val-2024.

Model SDR ↑ SDRI ↑ SI-SDR ↑

Submission 1 7.087 dB 7.052 dB 5.413 dB

Submission 2 8.007 dB 7.972 dB 6.459 dB

Submission 3 8.191 dB 8.156 dB 6.794 dB

Submission 4 8.467 dB 8.432 dB 7.403 dB

shown considerable advancement over the baseline, exhibiting an
SDR of 8.191 dB on DCASE-T9Val-2024. By ensembling 32kHz
models and the 16kHz model, the separation performance can be
further improved, with an SDR of 8.467 dB.
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