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ABSTRACT

This technical report contains a description of Midea’s submis-
sion to Task 2 “First-Shot Unsupervised Anomalous Sound De-
tection for Machine Condition Monitoring” of DCASE Challenge
2024. Compared with previous challenges, this task focuses on the
first-shot problem, and some attribute information is unavailable,
which brings many challenges. Our proposed system is based on
a self-supervised learning approach by using a convolutional neu-
ral network to extract feature vectors from input sounds and an
anomaly detection algorithm to detect abnormal sounds. The pro-
posed method is evaluated using the DCASE 2024 Task 2 devel-
opment dataset. The results show that the proposed method can
effectively extract the sound features and significantly outperforms
the baseline in detection performance.

Index Terms— anomalous sound detection, unsupervised
learning, domain generalization, data augmentation

1. INTRODUCTION

DCASE 2024 Challenge Task 2 [1] aims at First-Shot Unsuper-
vised Anomalous Sound Detection for Machine Condition Monitor-
ing.The purpose of the task is to detect whether the sound emitted
by the target machine type is abnormal. However, since the fre-
quency of anomalies is very low, there is a lack of abnormal data,
which makes it not a typical binary classification problem but an
unsupervised problem. At the same time, the task focuses on the
first-shot problem, which makes it impractical to use the test data
in the development set to tune the hyperparameters of each ma-
chine type because the machine type may be novel. In addition,
the source domain and target domain data are seriously unbalanced,
which may cause the performance of the model to deteriorate on the
target domain [2, 3]. The organizers proposed two baseline meth-
ods [4] based on autoencoders, using mean squared error (MSE) and
Mahalanobis distance (MAHALA) as anomaly scores. Both meth-
ods performed well on the source domain, but poorly on the target
domain. This is mainly attributed to the small amount of data in the
target domain.

In the previous challenge, a common practice among the top-
ranked teams was to train a classifier as an auxiliary task, training
embeddings based on different machine types and working con-
ditions, which effectively learned the distribution of normal sam-
ples. The final anomaly score is based on the similarity between
the features extracted from the test data and the features extracted
from normal sounds. This year, the task has put forward new re-
quirements. The attribute information of the machine is not always
available, which requires the system to work well with and without

attribute information. This makes it more difficult to train embed-
dings using auxiliary classification tasks, and the model is more
likely to overfit without attribute information. Therefore, we pro-
pose an improved baseline algorithm and use a variety of data aug-
mentation methods to enhance the detection performance.

2. PROPOSED METHOD

2.1. Proposed baseline model

We used the model in [5] as our backbone network of our base-
line model. For the input data, we first unified it into a fixed length
by repeating and cropping the waveform, which facilitates the sub-
sequent processing of the data. In order to capture dynamic and
static frequency information, we used two different input feature
representations, namely the magnitude spectrum and the magnitude
spectrogram. Among them, we used the full magnitude spectrum to
obtain a very high frequency resolution. For the magnitude spectro-
gram, we obtained it by short-time Fourier transform (STFT) and
subtracted the time average to remove static frequency information,
where the sampling window size was set to 1024, the hop size was
512, the maximum frequency was set to 8000Hz, and the minimum
frequency was 200Hz. The dual-branch network consists of an im-
proved ResNet architecture and multiple one-dimensional convo-
lutions. For dual branches, we use Convolutional Block Attention
Module (CBAM) [6] to adaptively adjust the channel and spatial
weights of the feature map, highlight important features, suppress
irrelevant features, and thus improve the classification performance.
CBAM combines channel attention and spatial attention to effec-
tively improve the expressiveness of the model. Compared with tra-
ditional convolutional modules, CBAM significantly enhances the
representation ability of the model with limited increase in parame-
ters, and improves the accuracy and robustness of the network. The
outputs of the dual branches are concatenated to form an embed-
ding of size 256, which we use to calculate cosine similarity as our
anomaly score. The training is performed using the subcluster Ada-
Cos loss [7] and the Adam optimizer. The loss function of the model
consists of the cross entropy loss of the joint category of machine
ID and attribute £;oin: and the cross entropy loss of the individual
machine ID L, qchine, defined as follows:

L= ['joint + L"machine (1)

2.2. Data augmentation

In the task, the data of different working states of each machine is
unbalanced, especially the data of source domain and target domain
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Table 1: Anomaly detection results [%] for different machine types

Machine type  Criteria MSEAE MHLAE Submission 1  Submission 2  Submission 3 ~ Submission 4
AUC(source) 66.90 63.01 55.92 53.08 56.72 48.88
ToyCar AUC(target) 33.70 37.35 57.72 48.48 47.76 46.76
pAUC 48.77 51.04 48.68 50.53 49.53 48.00
AUC(source) 76.63 61.99 68.56 65.72 68.20 68.04
ToyTrain AUC(target)  46.92 39.99 53.76 67.40 65.44 66.20
pAUC 47.95 48.21 50.26 58.16 60.58 53.74
AUC(source) 62.01 54.43 63.96 68.64 59.60 61.56
bearing AUC(target) 61.40 51.58 77.12 72.08 69.88 68.04
pAUC 57.58 58.82 59.89 54.42 55.89 51.79
AUC(source) 67.71 79.37 64.56 58.16 53.68 61.56
fan AUC(target) 55.24 42.70 66.36 68.28 65.68 63.72
pAUC 57.53 53.44 55.00 56.16 55.89 57.11
AUC(source) 70.40 81.82 68.96 75.04 66.68 66.28
gearbox AUC(target) 69.34 74.35 73.60 75.48 69.44 71.32
pAUC 55.65 55.74 52.26 53.63 55.26 51.68
AUC(source) 66.51 75.35 75.36 95.52 96.84 95.56
slider AUC(target) 56.01 68.11 76.84 88.36 87.88 88.76
pAUC 51.77 49.05 70.79 73.68 72.37 75.26
AUC(source) 51.07 55.69 89.12 88.24 96.52 88.68
valve AUC(target) 46.25 53.61 67.56 65.28 63.84 64.28
pAUC 52.42 51.26 65.00 63.84 69.63 64.16
AUC(source) 64.99 65.77 68.24 69.34 67.71 67.00
All(hmean) AUC(target) 50.26 49.51 66.44 67.39 65.30 64.98
pAUC 52.84 52.28 56.47 57.83 58.94 56.23

of different machines, which may be one of the reasons why the
model performs well in the source domain but poorly in the target
domain. To solve this problem, we use a variety of mixed data
augmentation methods and apply them to our the baseline model as
our submission of the task.

One of the most classic methods to solve data imbalance is
the Synthetic Minority Over-sampling Technique (SMOTE) [8].
SMOTE balances the data set by generating synthetic samples.
Compared with simple resampling, the synthetic samples generated
by SMOTE are more diverse. For single sample data, SMOTE can-
not enhance it. We will first use time warping [9] to increase the
sample size of the data to ensure the enhancement effect. For cate-
gories without attribute information, we use the K-means clustering
[10] method to cluster the data first to increase the number of joint
categories and avoid model overfitting. During the training process,
we use the Mixup [11] data enhancement technology to generate
new training samples. Mixup helps improve the generalization abil-
ity of the model by mixing two groups of samples and their labels,
and performs better when processing noisy data.

3. RESULTS AND SUBMISSIONS

A total of four different systems were submitted to the challenge.
Table 1 shows the comparison of our submissions with two baseline
methods.Submission 1 is the result of our proposed baseline model,
submission 2 is the result after clustering the data without attribute

information, submission 3 is the result of using Mixup technology,
and submission 4 is the result of using time warping, Smote and
Mixup technology.
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