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ABSTRACT

This technical report describes the proposed system submitted to
the DCASE2024 Task3: Sound Event Localization and Detection
with Source Distance Estimation. There are two tracks, and we par-
ticipate in the audio-only track. At first, we adopt the CST block, a
transformer-based network, to extract meaningful features for pre-
dicting sub-tasks DOA and SED. Next, DOA and EVENT guid-
ance attention blocks are introduced to boost the performance on a
Multi-ACCDOA-based single-task system for the SELD tasks. We
only apply the data augmentation method, a multi-channel simula-
tion technique to complement the sparsity of training data provided
by the challenge. Tested on the dev-test set of the Sony-TAu Real-
istic Spatial Soundscapes 2023 (STARSS23) dataset, our proposed
systems outperform the baseline system.

Index Terms— sound event localization and detection with
source distance estimation, attention

1. INTRODUCTION

The goal of Sound Event Localization and Detection (SELD) is to
detect the occurrence of sound events in three-dimensional space
belonging to specific target classes, track their temporal activity,
and estimate their directions-of-arrival(DOA) or positions. In com-
plex real-world acoustic environments where multiple sound events
overlap in time and space, humans can individually identify and
localize multiple sound events, but this is a very difficult task for
machines. Effective SELD systems are highly valuable in various
fields. The SELD systems in CCTV can perform rescue missions
when detecting gunshots, broken glasses, and screaming at crime
scenes and localizing them. In smart homes, they can be used
for sound scene analysis and audio monitoring, such as baby cry-
ing, doorbell detection, and elderly falls. In SELD-enabled service
robots, they can detect the user’s voices, and surrounding sound
events to interact with the user naturally.

The SELD problem consists of a task that identifies both
Sound Event Detection (SED) and Direction of Arrival Estima-
tion (DoAE). First introduced in 2019, the DCASE Challenge[1]
specified single static sound source situations and used multichan-
nel audio files synthesized by combining mono audio files and
impulse response. Subsequent DCASE Challenges[2, 3, 4, 5]
evolved into complex environmental configurations, including mov-
ing sources, various impulse responses, polyphonic events and over-
lapping events of the same class, and furthermore, lower SNR, and
real spatial sound scenes.
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Various model architectures have been designed for the SELD
task. the models comprised two branches followed by a single net-
work to predict SED and DOA separately[6, 7, 8]. Another method
of separating the network into SED and DOA modules and com-
bining the outputs was also introduced[9, 10]. Recent approaches
have been moving towards creating single-task systems to solve
the SELD task[11, 12, 13, 14]. Multi-ACCDOA[12] was proposed
to overcome the limitations of ACCDOA to catch polyphonies of
the same event class. Focusing on the model structure, many
researchers adopted the model based on attention mechanisms.
ResNet-Conformer[15, 16, 17, 18] was used for many participants
in DCASE challenges and showed outstanding performance. To fur-
ther enhance the attention mechanisms, CST-Former [8] which uses
separate attention for all three regions of time, frequency, and chan-
nel was introduced and achieved higher performance than ResNet-
Conformer on the DCASE 2022 challenge dataset. Although the
performance is improving gradually over previous DCASE chal-
lenges, a new change this year introduces distance estimation of the
detected events, which makes the task more challenging. With es-
timating distance together, the Multi-ACCDOA-based single-task
method causes overall performance degradation for SED and DOA.
For example, the baseline system for the DCASE 2024 challenge,
which has the same model architecture as the DCASE 2023 chal-
lenge, shows the lower performance of SED and DOA.

Through the fact that the overall prediction performance of the
model decreases as subtasks increase, we considered giving ad-
ditional guidance to the single-task system that predicts subtasks
jointly. In light of human auditory cognitive processes for the SELD
task, humans can focus preferentially on the direction of sound
sources, and then predict sound events through temporal acoustic in-
formation about the direction. In this work, motivated by these pro-
cesses of human cognition, we propose a method for sequentially
extracting DOA and SED features and guiding Multi-ACCDOA-
based single-task in the correct direction.

2. PROPOSED METHOD

2.1. Features

In this work, motivated by these processes of human cognition, we
propose a method for sequentially extracting DOA and SED fea-
tures and guiding Multi-ACCDOA-based single-task in the correct
direction. The STARSS23 dataset provides two recording formats:
first-order ambisonics (FOA) and microphone array. In previous
works, the FOA format was preferred as input features because it
performed better than the MIC format for the SELD task. We use
the FOA format as input features. We convert four channels of audio
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Figure 1: Overall architecture of the proposed network.

data sampled at a frequency of 24kHz into seven channel features
containing four log-mel spectrograms and three intensity vectors.
For the short-time Fourier transform (STFT), the Hann window with
a length of 1024 points(20ms) is used and the length of the shift is
512 points(10ms) to generate a 513-dimensional complex spectral
vector. The log-mel spectrograms and intensity vectors are com-
puted with 64-dimensional real-valued vectors.

2.2. Audio Data Augmentation

The official training dataset is the development set and synthetic
recordings provided by the DCASE 2024 challenge. However,
we analyzed real recordings and found a significant lack of occur-
rence of specific event classes. Also, To add diversity to the sound
sources of the event classes for training the model, we generate the
multi-channel audio data. Isolated sound samples are convoluted
with spatially room impulse response (SRIRs)[19] using the image
method. Samples of male and female speeches are mainly sourced
from the VoxCeleb[20] dataset, and the samples of remaining target
event classes were extracted from FSD50K[21] and ESC-50[22].
The synthesized audio sample is 1 minute long and contains up to
3 simultaneous sound sources. Eventually, 20 hours of synthetic
data is generated and converted from MIC format to FOA format
through an ambisonics format converter. We combine these data
with the baseline dataset for training. Other augmentation methods
such as audio channel swapping[23], time-domain mixing[18], and
random cutout[17] are not included in our work.

2.3. Network Architecture

In this study, we adopt the CST block[13] as a transformer-based
network containing the local perception unit (LPU), the CST atten-
tion layer, and the inverted residual FFN (IRFFN). This method uses
distinct attention mechanisms for channel, spectral, and temporal
aspects and it has been shown to outperform other top-tier models
on the SELD tasks. So, we use the CST block to extract features
for several subtasks. The overall network architecture is shown in
Fig.1 The architecture is composed of CNN blocks, CST blocks,

Figure 2: A detailed implementation of the DOA and Event Guid-
ance attention block.

and the guidance(DOA, Event) attention blocks. As can be seen,
we first extract the CNN features using convolution blocks. Each
of the CNN blocks consists of a 2D convolution, batch normaliza-
tion, and rectified linear unit same as the challenge baseline CNN
blocks. The only difference is that the T-F poolings are applied as
(1,1), (1,2), and (5,2) kernels for three convolution blocks.

We design to have two outputs for angle and event estimation
in addition to the final Multi-ACCDOA-based single task output.
First of all, the model estimates the cartesian coordinates (x,y,z) per
frame for the five overlapping events(maximum polyphony). The
DOA guidance attention block is then used to allow the model to
focus on the corresponding five directions, as shown in Fig.2. We
fused the two features using AFF[24]. Next, the model is aimed to
focus on sound event detection. The model detects the sound events
per frame for the five overlapping events as the second output. Fi-
nally, the model predicts the output of Multi-ACCDOA in the same
way as CST-Former.

Building upon Permutation-invariant training(PIT)[25], the loss
function for DOA and Event output is defined as in (1), where Ψ
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denotes the set of all the permutations of overlapping sources, and
ψ refers to a permutation. LDOA is mean squared error (MSE) loss
and LEVENT is binary cross entropy loss.

LPIT = min
ψ∈Ψ

C∑
c=1

Lψ,DOA +min
ψ∈Ψ

C∑
c=1

Lψ,EVENT (1)

The final SELD loss is defined as in (2)

LSELD = LPIT + LACCDOA (2)

2.4. Network Training

The maximum number of epochs is set to 500 and the batch size
is set to 128. The Adam optimizer is used and a tri-stage learning
rate scheduler is used with an upper limit of 0.0005. For the first
50 epochs, we warm up the learning rate linearly, hold the learning
rate for the 100 updates, and decay the learning rate linearly. In
the fine-tuning stage, the saved best result is further trained on real
recordings for an extra 50 epochs with a learning rate of 3e-5 and
decays linearly. Table 1 shows the final output and model parame-
ters of the submitted system.

Submission Output Type Parameter Size
Submission 1-4 Multi-ACCDOA 6M

Table 1: Sumission Configuration.

3. RESULTS ON DEVELOPMENT DATASET

We evaluate our proposed method on the development dataset of
STARSS23. The performance of the proposed method is shown in
Table 2. ’Baseline-FOA’ represents the baseline results presented by
the organizers. We submitted a total of four submissions. Our data
augmentation method only proceeds with multi-channel audio data
generation and other methods are not accessed. Additional perfor-
mance improvements are expected if we can afford to experiment
further using other data augmentation methods used in the SELD
tasks.

Model SELD macro F20◦/1 DOAE RDE
Baseline-FOA - 13.1% 36.9◦ 33%

Sub1 0.35 33.9% 19.5◦ 28%
Sub2 0.35 34.7% 18.8◦ 28%
Sub3 0.35 35.0% 19.0◦ 29%
Sub4 0.35 35.1% 18.9◦ 29%

Table 2: Experimental results of the proposed SELD systems eval-
uated by joint metrics and development dataset. The metrics of
SELD, macro F20◦/1, DOAE, RDE are SELD metric, macro-
averaging of the location-dependent F1-score, class-dependent
DOA error, and class-dependent relative distance error respectively.

4. CONCLUSION

In this paper, we present the proposed system to solve the SELD
task in DCASE 2024 challenge task 3 (audio-only task). The addi-
tional task for distance estimation of detected events is included this

year. Therefore, building a well-generalized system for SELD tasks
is more challenging. We propose DOA and EVENT guidance meth-
ods to improve the model generalization by conceiving the human
audio-cognitive process. Before the single SELD output, the model
goes through the process of estimating the directions of arrival and
predicting events for corresponding directions, sequentially. In this
way, we aim to reduce complexity by giving additional guidance
on DOA and SED. We also employ multi-channel simulation tech-
niques to improve the generalization of the system. The experimen-
tal results show that our method outperformed the baseline for the
DCASE 2024 challenge task 3.
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